About This Item
- Full TextFull Text(subscription required)
- Pay-Per-View PurchasePay-Per-View
Purchase Options Explain
Share This Item
The AAPG/Datapages Combined Publications Database
AAPG Bulletin
Abstract
AAPG Bulletin, V.
DOI:10.1306/06270605178
Hydrocarbon filling and leakage history of a deep geopressured sandstone, Fulmar Formation, United Kingdom North Sea
Mark Wilkinson,1 R. Stuart Haszeldine,2 Anthony E. Fallick3
1School of GeoSciences, Grant Institute, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh, Scotland EH9 3JW, United Kingdom; [email protected]
2School of GeoSciences, Grant Institute, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh, Scotland EH9 3JW, United Kingdom
3Scottish Universities Environmental Research Center, East Kilbride, G75 0QF, Scotland, United Kingdom
ABSTRACT
Diagenetic minerals in a water-filled borehole from the Jurassic Fulmar Formation, United Kingdom central North Sea, record two phases of hydrocarbon filling and emptying. Initial oil charge was during the Late Cretaceous, at shallow burial depths of about 1.5 km (0.9 mi). As we consider that hydrocarbon has preserved porosity during burial, this has implications for the understanding of the porosity evolution of the Fulmar Formation, which, in other locations, is an important hydrocarbon reservoir. The early oil charge, as recorded by illite K-Ar ages, progressively filled the structure from 84 to 59 Ma, and possibly precipitated bitumen because of biodegradation. The first oil predated many of the burial diagenetic reactions within the sandstone. After leak-off at ca. 60 Ma, diagenetic reactions continued in an open geochemical system, with possible import of CO2. Products of these reactions include ankerite and quartz overgrowth cements. Hydrocarbon staining postdates these phases and provides evidence of a hydrocarbon charge, probably gas condensate. The second hydrocarbon charge also leaked off, and the sandstone is now water bearing. Previous work on the Fulmar Formation has incorrectly placed all the diagenetic reactions as predating the first arrival of hydrocarbon. The present-day pore fluids are high-salinity, high-18O fluids derived from the underlying Permian Zechstein evaporates. These fluids entered the reservoir during a phase of overpressure release that caused fracturing of the framework quartz grains, possibly coincident with the second phase of hydrocarbon leak-off at 2–5 Ma.
Pay-Per-View Purchase Options
The article is available through a document delivery service. Explain these Purchase Options.
Watermarked PDF Document: $14 | |
Open PDF Document: $24 |
AAPG Member?
Please login with your Member username and password.
Members of AAPG receive access to the full AAPG Bulletin Archives as part of their membership. For more information, contact the AAPG Membership Department at [email protected].