About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

AAPG Bulletin

Abstract

AAPG Bulletin, V. 90, No. 12 (December 2006), P. 1921-1944.

Copyright copy2006. The American Association of Petroleum Geologists. All rights reserved.

DOI:10.1306/06200605195

A new model for assessing trap integrity and oil preservation risks associated with postrift Previous HitfaultNext Hit reactivation in the Timor Sea

Anthony Gartrell,1 Wayne R. Bailey,2 Mark Brincat3

1Commonwealth Scientific and Industrial Research Organization Petroleum, ARRC, 26 Dick Perry Ave., Technology Park, Kensington, Perth, WA 6151, Australia; [email protected]
2Commonwealth Scientific and Industrial Research Organization Petroleum, ARRC, 26 Dick Perry Ave., Technology Park, Kensington, Perth, WA 6151, Australia; present address: Woodside Energy Limited, 240 St Georges Tce, Perth, WA 6000, Australia
3Commonwealth Scientific and Industrial Research Organization Petroleum, ARRC, 26 Dick Perry Ave., Technology Park, Kensington, Perth, WA 6151, Australia

ABSTRACT

Based on comparisons between structural histories and the distribution of current and paleo-oil accumulations, it is proposed that the partitioning of postrift strain between faults in relation to trap geometry was critical in determining oil preservation during Neogene Previous HitfaultNext Hit reactivation in the Timor Sea. Most of the trap-bounding faults in the region have been reactivated; however, the distribution of postrift displacements is heterogeneous and depends heavily on rift-phase Previous HitfaultNext Hit size, location, and interaction with nearby faults. Preferential localization of postrift strain onto larger faults in the population resulted in the partial protection of some Previous HitfaultNext Hit-bound traps with favorable geometries, but promoted breaching of others. Oil columns tend to be preserved where the crest of the trap is bound by a Previous HitfaultNext Hit segment that has accommodated relatively low postrift displacements (less than about 60 m [196 ft]) during reactivation, typically where smaller rift faults are overlapped by larger rift faults. Complete loss of oil column is generally observed where the crest of the trap is bound by a typically large Previous HitfaultNext Hit with high postrift displacements (greater than about 60 m [196 ft]). Where faults with high postrift displacements are located downdip of the trap crest, hydrocarbon columns are preserved down to the depth of the intersection between this Previous HitfaultNext Hit and the top reservoir horizon. A simple trap integrity model based on these observations was found to be largely consistent with a database of 69 drilled traps in the region. The mechanisms and models discussed in this study are likely to apply to other petroleum systems where Previous HitfaultTop reactivation represents a risk to hydrocarbon preservation.

Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Watermarked PDF Document: $14
Open PDF Document: $24

AAPG Member?

Please login with your Member username and password.

Members of AAPG receive access to the full AAPG Bulletin Archives as part of their membership. For more information, contact the AAPG Membership Department at [email protected].