About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

AAPG Bulletin

Abstract

AAPG Bulletin, V. 92, No. 7 (June 2008), P. 853-867.

Copyright copy2008. The American Association of Petroleum Geologists. All rights reserved.

DOI:10.1306/02200807065

Terminology for structural discontinuities

Richard A. Schultz,1 Haakon Fossen2

1Geomechanics-Rock Previous HitFractureTop Group, Department of Geological Sciences and Engineering/172, University of Nevada, Reno Nevada 89557; [email protected]
2Centre for Integrated Petroleum Research/Department of Earth Science, University of Bergen, Allegaten 41, N-5007 Bergen, Norway; [email protected]

ABSTRACT

Strain localization structures such as fractures, stylolites, and deformation bands have important effects on reservoir performance but lack a consistent terminology. Advances in the recognition and interpretation of such structures now motivate a comprehensive framework that stresses their similarities instead of their differences. We review and assess the classical terms for localized geologic structures, followed by a comprehensive nomenclature that accounts for joints, faults, fractures, anticracks, shear zones, and deformation bands in compact and high-porosity rocks. Geologic structural discontinuities are defined by their lengths and by the sense and rate of displacement change across them. For example, structural discontinuities having negligible thickness, and consequently, a discontinuous displacement across them, are called sharp discontinuities. Depending on the sense of displacement (opening, shearing, or closing), these structures are called cracks, faults, or anticracks. However, structural discontinuities having a measurable thickness in outcrop or hand specimen and a continuous change in displacement across them are called tabular discontinuities. Correspondingly, these types of deformation bands are called dilation bands, shear bands, or compaction bands. The class of structural discontinuity, i.e., sharp or tabular, depends on the properties of the deforming rock. Consistent characteristics and patterns of these structural discontinuities, and their displacement-length scaling relations, demonstrate the rich yet consistent varieties of strain localization that are manifested in crustal rocks in general, and reservoir rocks in particular.

Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Watermarked PDF Document: $14
Open PDF Document: $24

AAPG Member?

Please login with your Member username and password.

Members of AAPG receive access to the full AAPG Bulletin Archives as part of their membership. For more information, contact the AAPG Membership Department at [email protected].