About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

AAPG Bulletin

Abstract

AAPG Bulletin, V. 95, No. 11 (November 2011), P. 19591990.

Copyright copy2011. The American Association of Petroleum Geologists. All rights reserved.

DOI:10.1306/03151110134

Seismic geomorphology and high-resolution seismic stratigraphy of inner-shelf fluvial, estuarine, deltaic, and marine sequences, Gulf of Thailand

Hernan M. Reijenstein,1 Henry W. Posamentier,2 Janok P. Bhattacharya3

1Chevron MidContinent/Alaska Business Unit, Houston, Texas; [email protected]
2Chevron Energy Technology Company, Houston, Texas; [email protected]
3Department of Earth and Atmospheric Sciences, University of Houston, Houston, Texas; [email protected]

ABSTRACT

Pleistocene fluvial, estuarine, marine, and deltaic depositional systems were identified in the uppermost 80 m (262 ft) of the central Gulf of Thailand modern continental shelf, situated approximately 70 m (sim230 ft) below sea level. Integration of offshore three-dimensional (Previous Hit3-DNext Hit) seismic reflection data, high-resolution shallow-penetration two-dimensional (2-D) seismic reflection sparker and boomer profiles, and shallow geotechnical borehole measurements enabled the identification of seven depositional sequences.

The Previous Hit3-DNext Hit plan-view images at successive time slices exhibit single meandering channels (as much as 600 m [1969 ft] wide) and channel belts (as much as 10 km [6.2 mi] wide) deposited in the shelf during times of subaerial exposure. Additional geomorphic features imaged include incised valleys, interfluves, oxbow lakes, neck and chute cutoffs, and point-bar meander scrolls showing evidence of expansion and translation. The high-resolution 2-D profiles, with a tuning thickness of approximately 25 cm (sim9.8 in.), enabled the discrimination of high-frequency stratigraphic discontinuities (sequence boundaries) and allowed a detailed bed-scale seismic facies characterization of fluvial (point bars), deltaic (clinoforms), estuarine, and marine deposits within a sequence-stratigraphic context. The complete succession shows that most fluvial systems lie within incised valleys in the lower parts of each depositional sequence, fluvial channels show a degradational stacking pattern, and no evidence of fluvial aggradation is observed; aggradation is limited to hemipelagic sedimentation during marine incursions.

A shallow (lt35 m [lt115 ft]) single-story incised valley was described in detail, placing particular emphasis on the recognition criteria and the controls on valley formation and preservation potential of different systems tracts in an inner-shelf location. The Previous Hit3-DTop characterization of this system allowed differentiation of sand-prone point-bar deposits and mud-prone abandonment channel facies. The sinuous but continuous mud-filled channel may act as a lateral muddy barrier or baffle that can potentially subdivide a reservoir system into discrete compartments.

Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Watermarked PDF Document: $14
Open PDF Document: $24

AAPG Member?

Please login with your Member username and password.

Members of AAPG receive access to the full AAPG Bulletin Archives as part of their membership. For more information, contact the AAPG Membership Department at [email protected].