About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

AAPG Bulletin

Abstract

AAPG Bulletin, V. 95, No. 11 (November 2011), P. 19912014.

Copyright copy2011. The American Association of Petroleum Geologists. All rights reserved.

DOI:10.1306/03011110172

Previous HitPermeabilityNext Hit Previous HitpredictionNext Hit in chalks

M. Monzurul Alam,1 Ida Lykke Fabricius,2 Manika Prasad3

1CERE (Center for Energy Resources Engineering), Department of Civil Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; [email protected]
2CERE (Center for Energy Resources Engineering), Department of Civil Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; [email protected]
3Petroleum Engineering Department, Colorado School of Mines, Golden, Colorado; [email protected]

ABSTRACT

The velocity of elastic waves is the primary datum available for acquiring information about subsurface characteristics such as lithology and Previous HitporosityNext Hit. Cheap and quick (spatial coverage, ease of measurement) information of Previous HitpermeabilityNext Hit can be achieved, if sonic velocity is used for Previous HitpermeabilityNext Hit Previous HitpredictionNext Hit, so we have investigated the use of velocity data to predict Previous HitpermeabilityNext Hit. The compressional velocity from wireline logs and core plugs of the chalk reservoir in the South Arne field, North Sea, has been used for this study. We compared various methods of Previous HitpermeabilityNext Hit Previous HitpredictionNext Hit from velocities. The relationships between Previous HitpermeabilityNext Hit and Previous HitporosityNext Hit from core data were first examined using Kozeny's equation. The data were analyzed for any correlations to the specific surface of the grain, Sg, and to the hydraulic property defined as the flow zone indicator (FZI). These two methods use two different approaches to enhance Previous HitpermeabilityNext Hit Previous HitpredictionNext Hit from Kozeny's equation. The FZI is based on a concept of a tortuous flow path in a granular bed. The Sg concept considers the pore space that is exposed to fluid flow and models Previous HitpermeabilityNext Hit resulting from effective flow parallel to pressure drop. The Previous HitporosityNext Hit-Previous HitpermeabilityNext Hit relationships were replaced by relationships between velocity of elastic waves and Previous HitpermeabilityNext Hit using laboratory data, and the relationships were then applied to well-log data. We found that the Previous HitpermeabilityNext Hit Previous HitpredictionTop in chalk and possibly other sediments with large surface areas could be improved significantly using the effective specific surface as the fluid-flow concept. The FZI unit is appropriate for highly permeable sedimentary rocks such as sandstones and limestones that have small surface areas.

Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Watermarked PDF Document: $14
Open PDF Document: $24

AAPG Member?

Please login with your Member username and password.

Members of AAPG receive access to the full AAPG Bulletin Archives as part of their membership. For more information, contact the AAPG Membership Department at [email protected].