About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

AAPG Bulletin


AAPG Bulletin, V. 96, No. 4 (April 2012), p. 595614.

Copyright copy2012. The American Association of Petroleum Geologists. All rights reserved.


Temporal and lateral variation in the development of growth faults and growth strata in western Niger Delta, Nigeria

Hamed Fazli Khani,1 Stefan Back2

1Geological Institute, Rheinisch-Westfaelische Technische Hochschule (RWTH) Aachen University, 52062 Aachen, Germany; [email protected]
2Geological Institute, Rheinisch-Westfaelische Technische Hochschule (RWTH) Aachen University, 52062 Aachen, Germany; [email protected]


This study examines eight syndepositional faults and syntectonic sediments in five major fault blocks in western Niger Delta, offshore Nigeria, on three-dimensional seismic data. The initiation, lateral growth and retreat, periods of activity and quiescence, and decay of faulting around these blocks can be ascertained by analyzing a series of time-structure and isopach maps. The study area can be subdivided into three structural zones. The first structural zone is a northwestern zone characterized by a major counterregional growth fault in the deep subsurface. This deep-seated structure is superposed by an array of younger regional growth faults displacing a kilometer-thick sedimentary overburden that accumulated on the former footwall. The second structural zone is a central to eastern zone that seems mostly unaffected by young deltaic faulting. This zone is characterized by the thinnest sedimentary record of the study area. The third structural zone is a southeastern zone that is dominated by a large, listric, backstepping master fault zone associated with a kilometer-scale rollover system. Regional structural and stratigraphic analyses document an apparently strong relationship between syntectonic sedimentation and syndepositional fault activity in that phases of significant fault activity, lateral fault growth, and fault migration concur with major depositional phases; in turn, areas and intervals characterized by the least sediment accumulation also record the lowest fault activity. However, one particularity of the studied system is that it underwent at least one period of seaward fault progression that coincided with a backstepping of faulting on the landward side. Although the forward stepping of faulting near the delta front can be interpreted as the consequence of the progressive loading during delta progradation, the contemporaneous backstepping of faulting further inboard likely reflects the sustained lateral growth of mature deltaic faults into previously undeformed proximal parts of the depocenter. The results of this study, thus, document that although an apparent correlation with the superimposed depositional system exists on a regional scale, inboard deltaic faults may persist to grow irrespective of sedimentary loading. The recognition of such fault trends is particularly important for estimating the influence of late-stage fault movement on hydrocarbon migration or the discovery of subtle fault-controlled hanging-wall reservoirs.

Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Watermarked PDF Document: $14
Open PDF Document: $24

AAPG Member?

Please login with your Member username and password.

Members of AAPG receive access to the full AAPG Bulletin Archives as part of their membership. For more information, contact the AAPG Membership Department at [email protected].