About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

AAPG Bulletin

Abstract

AAPG Bulletin, V. 97, No. 3 (March 2013), P. 437464.

Copyright copy2013. The American Association of Petroleum Geologists. All rights reserved.

DOI:10.1306/09071211191

Permeability and flow impact of faults and deformation bands in high-porosity sand reservoirs: Southeast Basin, France, analog

Elodie Saillet,1 Christopher A. J. Wibberley2

1Geoazur, Universite de Nice-Sophia Antipolis, Valbonne, France; present address: Department of Civil Engineering, University of Strathclyde, 107 Rottenrow, Glasgow G4 0NG, United Kingdom; [email protected]
2Total EampP, CSTJF, Avenue Larribau, 64018 Pau Cedex, France; [email protected]

ABSTRACT

Outcrops of the Cretaceous high-porosity sandstone of the Southeast Basin, France, show two main types of deformation structures: a large number of small-offset, shear-enhanced cataclastic deformation bands (DBs); and a small number of large (meters to decameters)-offset ultracataclastic fault zones. Microstructural analyses of the cataclastic DBs show that fragmentation produces strands of cataclastic fragment-supported matrix, separated by weakly fractured host rock, which cluster to form the DBs. The ultracataclastic fault zones, however, are composed of a matrix-supported ultracataclasite material. Permeability data show that the DBs reduce host-rock permeability by 0.5 to 2 orders of magnitude, whereas the ultracataclasites reduce permeability by approximately 4 orders. Simple calculations considering the structural frequency, thickness, and permeability of these faults suggest that, although the DBs may have an impact on single-phase flow, it is most likely to be less than a 50% reduction in flow rate in extensional contexts, but it may be more severe in the most extreme cases of structural density in tectonic shortening contexts. The larger ultracataclastic faults, however, despite their much lower frequency, will have a more significant reduction in flow rate, probably of approximately 90 to 95%. Hence, although they are commonly at or below the limit of seismic resolution, the detection and/or prediction of such ultracataclastic faults is likely to be more important for single-phase flow problems than DBs (although important two-phase questions remain). The study also suggests that it is inappropriate to use the petrophysical properties of core-scale DB structures as analogs to larger seismic-scale faults.

Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Watermarked PDF Document: $14
Open PDF Document: $24

AAPG Member?

Please login with your Member username and password.

Members of AAPG receive access to the full AAPG Bulletin Archives as part of their membership. For more information, contact the AAPG Membership Department at [email protected].