About This Item
- Full TextFull Text(subscription required)
- Pay-Per-View PurchasePay-Per-View
Purchase Options Explain
Share This Item
The AAPG/Datapages Combined Publications Database
AAPG Bulletin
Abstract
AAPG Bulletin, V.
DOI:10.1306/12181212061
A new theoretical approach to model sorption-induced coal shrinkage or swelling
Shimin Liu,1 Satya Harpalani2
1Department of Energy and Mineral Engineering, Pennsylvania State University, University Park, Pennsylvania; [email protected]
2Department of Mining and Mineral Resources Engineering, Southern Illinois University, Carbondale, Illinois; [email protected]
ABSTRACT
The shrinkage or swelling of coal as a result of gas desorption or adsorption is a well-accepted phenomenon. Its impact on permeability changes has also been recognized for two decades. Its importance has increased significantly because of the potential of coals that are not likely to be mined and depleted or nearly depleted coalbed methane reservoirs to serve as CO2 repositories. This article proposes a new theoretical technique to model the volumetric changes in the coal matrix during gas desorption or adsorption using the elastic properties, sorption parameters, and physical properties of coal. The proposed model is based on the theory of changes in surface energy as a result of sorption. The results show that the proposed model is in excellent agreement with the laboratory volumetric strain data presented in the literature during the last 50 yr. Furthermore, the proposed model can be extended to describe mixed-gas sorption behavior, which can be applied to enhanced coalbed methane and CO2 sequestration operations.
Pay-Per-View Purchase Options
The article is available through a document delivery service. Explain these Purchase Options.
Watermarked PDF Document: $14 | |
Open PDF Document: $24 |
AAPG Member?
Please login with your Member username and password.
Members of AAPG receive access to the full AAPG Bulletin Archives as part of their membership. For more information, contact the AAPG Membership Department at [email protected].