About This Item
- Full TextFull Text(subscription required)
- Pay-Per-View PurchasePay-Per-View
Purchase Options Explain
Share This Item
The AAPG/Datapages Combined Publications Database
AAPG Bulletin
Abstract
AAPG Bulletin, V.
DOI:10.1306/02131312123
Variable gas content, saturation, and accumulation characteristics of Weibei coalbed methane pilot-production field in the southeastern Ordos Basin, China
Yanbin Yao,1 Dameng Liu,2 Yongkai Qiu3
1Coal Reservoir Laboratory of National Engineering Research Center of CBM Development and Utilization, China University of Geosciences, Beijing, People's Republic of China; [email protected]
2Coal Reservoir Laboratory of National Engineering Research Center of CBM Development and Utilization, China University of Geosciences, Beijing, People's Republic of China; [email protected]
3Coal Reservoir Laboratory of National Engineering Research Center of CBM Development and Utilization, China University of Geosciences, Beijing, People's Republic of China; [email protected]
ABSTRACT
Using diverse geologic and geophysical data from recent exploration and development, and experimental results of analysis of gas content, gas capacity, and gas composition, this article discusses how geologic, structural, and hydrological factors determine the heterogeneous distribution of gas in the Weibei coalbed methane (CBM) field.
The coal rank of the Pennsylvanian no. 5 coal seam is mainly low-volatile bituminous and semianthracite. The total gas content is 2.69 to 16.15 m3/t (95.00–570.33 scf/t), and gas saturation is 26.0% to 93.2%. Burial coalification followed by tectonically driven hydrothermal activity controls not only thermal maturity, but also the quality and quantity of thermogenic gas generated from the coal.
Gas composition indicates that the CBM is dry and of dominantly thermogenic origin. The thermogenic gases have been altered by fractionation that may be related to subsurface water movement in the southern part of the study area.
Three gas accumulation models are identified: (1) gas diffusion and long-distance migration of thermogenic gases to no-flow boundaries for sorption and minor conventional trapping, (2) hydrodynamic trapping of gas in structural lows, and (3) gas loss by hydrodynamic flushing. The first two models are applicable for the formation of two CBM enrichment areas in blocks B3 and B4, whereas the last model explains extremely low gas content and gas saturation in block B5. The variable gas content, saturation, and accumulation characteristics are mainly controlled by these gas accumulation models.
Pay-Per-View Purchase Options
The article is available through a document delivery service. Explain these Purchase Options.
Watermarked PDF Document: $14 | |
Open PDF Document: $24 |
AAPG Member?
Please login with your Member username and password.
Members of AAPG receive access to the full AAPG Bulletin Archives as part of their membership. For more information, contact the AAPG Membership Department at [email protected].