About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

AAPG Bulletin

Abstract

AAPG Bulletin, V. 97, No. 8 (August 2013), P. 12271248.

Copyright copy2013. The American Association of Petroleum Geologists. All rights reserved.

DOI:10.1306/02081312155

Previous HitSeismicNext Hit geomorphological analysis and hydrocarbon potential of the Lower Cretaceous Cromer Knoll Group, Heidrun field, Norway

Lorena Moscardelli,1 Sarika K. Ramnarine,2 Lesli Wood,3 Dallas B. Dunlap4

1Bureau of Economic Geology, Jackson School of Geosciences, University of Texas at Austin, Austin, Texas; [email protected]
2British Petroleum Trinidad and Tobago, 5 and 5A Queens Park West Plaza, Port of Spain, Trinidad and Tobago; [email protected]
3Bureau of Economic Geology, Jackson School of Geosciences, University of Texas at Austin, Austin, Texas; [email protected]
4Bureau of Economic Geology, Jackson School of Geosciences, University of Texas at Austin, Austin, Texas; [email protected]

ABSTRACT

The Heidrun field, located on the Halten Terrace of the mid-Norwegian continental shelf, was one of the first giant oil fields found in the Norwegian Sea. Traditional reservoir intervals in the Heidrun field lie within the Jurassic synrift sequence. Most Norwegian continental shelf fields have been producing from these Jurassic reservoirs for the past 30 yr. Production has since declined in these mature fields, but recently, exploration for new reservoirs has resurged in this region. The Jurassic rifted fault blocks form a narrow continental shelf in Norway, thereby greatly reducing the areal extent for exploration and development within existing fields. As the rift axis is approached farther offshore, these Jurassic reservoirs become very deep, too risky to drill, and uneconomical. This risk has prompted exploration in more recent years of the shallower Cretaceous, postrift stratigraphic succession. Cretaceous turbidites have been found in the Norwegian and North Seas, and the discovery of the Agat field in the Norwegian North Sea confirms the existence of a working petroleum system capable of charging Cretaceous reservoirs. These Cretaceous reservoirs were deposited as slope- and basin-floor fans within a series of underfilled rifted deeps along the Norwegian continental shelf and are thought to be sourced from the localized erosion of Jurassic rifted highs. We use three-dimensional Previous HitseismicNext Hit and well data to document the geomorphology of a deep-water, Lower Cretaceous wedge (Cromer Knoll Group) within the hanging wall of a rift-related half graben formed on the Halten Terrace offshore mid-Norway. Previous HitSeismicTop attribute extractions taken within this Lower Cretaceous wedge reveal the presence of several lobate to elongated bodies that seem to cascade over fault-bounded terraces associated with rifted structures. These high-amplitude, elongated bodies are interpreted as deep-water sedimentary conduits that are time equivalent to the Cretaceous basin-floor fans in more distal parts of the basin to the west. These half-graben fills have the potential to contain high-quality Cretaceous sandstones that might represent a potential new reservoir interval within the Heidrun field.

Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Watermarked PDF Document: $14
Open PDF Document: $24

AAPG Member?

Please login with your Member username and password.

Members of AAPG receive access to the full AAPG Bulletin Archives as part of their membership. For more information, contact the AAPG Membership Department at [email protected].