About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

AAPG Bulletin

Abstract

AAPG Bulletin, V. 98, No. 8 (August 2014), PP. 15991630.

Copyright copy2014. The American Association of Petroleum Geologists. All rights reserved.

DOI: 10.1306/08211312087

Lithology-based sequence-stratigraphic framework of a mixed carbonate-siliciclastic succession, Lower Cretaceous, Atlantic coastal plain

Brian P. Coffey1 and Richard F. Sunde2

1Earth Sciences, Simon Fraser University, Burnaby, British Columbia, Canada, present address: Apache Corporation, Houston, 2000 Post Oak Boulevard, Texas 77056; [email protected]
2EnCana, 500 Centre Street, Calgary, Alberta, Canada T2G1A6; [email protected]

ABSTRACT

This study presents a lithology-based sequence-stratigraphic framework and depositional model for Lower Cretaceous, mixed siliciclastic-carbonate sediments of the Mid-Atlantic coastal plain (eastern United States). Lithologic data from cores and cuttings were integrated with wireline logs and two-dimensional seismic data to document lithofacies variability and stacking patterns across the Albemarle Basin of eastern North Carolina. Ten facies associations are defined, which are variably present within siliciclastic- and carbonate-dominated depositional profiles interpreted to extend from onshore lowland coastal plain to deep-shelf depositional environments.

Three depositional sequences (0, 1, 2) were identified, each with component upward-shoaling parasequences. Seismic reflectors typically coincided with key sequence-stratigraphic surfaces, which guided correlations between wells. Parasequences are grouped into parasequence sets with progressive progradational or retrogradational (highstand and transgressive systems tracts, respectively) stacking patterns. Transgressive parasequences are thinner, uniform in thickness, and tend to be more dominated by molluskan carbonate facies. Highstand parasequences have more variable thickness, are siliciclastic dominated, and tend to be progradational on seismic data. Late highstand deposits of sequence 1 are dominated by restricted carbonate facies that likely reflect increased aridity. Lowstand deposits were not recognized from onshore well and seismic data.

The sequence-stratigraphic framework developed documents the complex spatial and temporal facies relationships within a wave-dominated, mixed carbonate-siliciclastic passive-margin succession. The strata studied document the complex interplay of lithofacies within a transition zone between near-shore carbonate-dominated strata to the south (Southeast Georgia Embayment) and siliciclastic-dominated marginal-marine successions to the north (Baltimore Canyon Trough). It also provides a useful stratigraphic calibration set for coeval offshore sediments that have been identified as potential areas for hydrocarbon exploration.

Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Watermarked PDF Document: $14
Open PDF Document: $24

AAPG Member?

Please login with your Member username and password.

Members of AAPG receive access to the full AAPG Bulletin Archives as part of their membership. For more information, contact the AAPG Membership Department at [email protected].