About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

AAPG Bulletin

Abstract

AAPG Bulletin, V. 98, No. 10 (October 2014), P. 19111941.

Copyright copy2014. The American Association of Petroleum Geologists. All rights reserved.

DOI: 10.1306/02191413064

The Upper Triassic paralic deposits of the De Geerdalen Formation on Hopen: Outcrop analog to the subsurface Snadd Formation in the Barents Sea

T. G. Klausen,1 and A. Mørk2

1University of Bergen, Department of Earth Science, Allégaten 41, NO-5007 Bergen, Norway; [email protected].
2SINTEF Petroleum Research, S.P. Andersens veg 15 A, NO-7465 Trondheim, Norway; Norwegian University of Science and Technology, Department of Geology and Mineral Resources Engineering, NO-7491 Trondheim, Norway; [email protected].

ABSTRACT

The long and narrow island Hopen exposes mainly the Late Triassic De Geerdalen Formation, which is time-equivalent to the upper part of the Snadd Formation: a proven hydrocarbon reservoir in the Barents Sea. The De Geerdalen Formation on Hopen has previously been superficially described in a regional context and has been suggested to represent tidally dominated, paralic coastal plain deposits. Recent sedimentological investigations explain subtle but important variability in sedimentary architecture pointing to different depositional processes. Tidal and fluvial channel deposits show equal size and geometry, but are distinguishable by virtue of characteristic internal heterogeneities and structures. Lateral correlation along the island suggests that the channel-sandstone deposits are positioned at different stratigraphic levels and that they were deposited in a dynamic, paralic depositional environment. Based on the interpreted gross depositional environments, sequence-stratigraphic intervals are defined; these can be used as a basis for correlation. The scales of depositional architectures at Hopen are found to be directly relatable to subsurface seismic data from the upper part of the Snadd Formation in the Barents Sea, and, through regionally correlatable maximum flooding surfaces, these depositional elements can be put in a stratigraphic context. Additionally, some of the channel features demonstrated at Hopen are of comparable size and geometry to plan-view channel bodies extracted from seismic attribute mapping in the Snadd Formation. Detailed sedimentological studies undertaken on Hopen explain these depositional elements in more detail than can be resolved in subsurface data, with implications for future exploration efforts in the Barents Sea.

Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Watermarked PDF Document: $14
Open PDF Document: $24

AAPG Member?

Please login with your Member username and password.

Members of AAPG receive access to the full AAPG Bulletin Archives as part of their membership. For more information, contact the AAPG Membership Department at [email protected].