About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

AAPG Bulletin

Abstract

AAPG Bulletin, V. 99, No. 3 (March 2015), P. 403ndash432.

Copyright copy2015. The American Association of Petroleum Geologists. All rights reserved.

DOI: 10.1306/10081414003

Influence of mobile shale on thrust faults: Insights from discrete element simulations

Sarah Dean,1 Julia Morgan,2 and J. P. Brandenburg3

1Department of Earth Science, Rice University, 6100 Main St., Houston, Texas 77005; [email protected]
2Department of Earth Science, Rice University, 6100 Main St., Houston, Texas 77005; [email protected]
3Shell International Exploration and Production, 150 N. Dairy Ashford, Houston, Texas 77079; [email protected]

ABSTRACT

We study the effects of sedimentary loading of a mobile shale substrate, using two-dimensional discrete element modeling. We develop an updip extensional zone connected at depth to a downdip contractional zone, allowing us to study the formation of gravity-driven fold and thrust belts, and the evolution of décollements within this system. We compare our models to the Niger Delta type locale for shale tectonics. In general, most seismic interpretations of the Niger Delta include décollement(s) at the top of the mobile shale unit, but exact locations vary depending on area of investigation. Our models, particularly ones with mobile shale thicker than 2 km (1.2 mi), show more diffuse décollements, spanning the width of the mobile shale unit, which propagate out in front of the syntectonic sediment wedge and connect normal faults in the extensional zone with toe thrusts in the contractional zone. We also look at the distributions of stress and strain within our models, plotting the distributions of BLTN14003eq1 (maximum principal stress) and relating that to the vergence of thrust faults developed in our models. We quantify the amount of strain in different sections of the models, showing that extension is much greater than compression in the fold and thrust belt(s) alone, and that compression is distributed throughout the model, including in front of the fold and thrust belt.

Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Protected Document: $10
Internal PDF Document: $14
Open PDF Document: $24

AAPG Member?

Please login with your Member username and password.

Members of AAPG receive access to the full AAPG Bulletin Archives as part of their membership. For more information, contact the AAPG Membership Department at [email protected].