About This Item
- Full TextFull Text(subscription required)
- Pay-Per-View PurchasePay-Per-View
Purchase Options Explain
Share This Item
The AAPG/Datapages Combined Publications Database
AAPG Bulletin
Abstract
DOI: 10.1306/10021414026
Continental carbonates as a hydrocarbon reservoir, an analog case study from the travertine of Saturnia, Italy
Paola Ronchi1 and Francesco Cruciani2
1 Eni SpA Upstream and Technical Services, Via Emilia 1, 20097, San Donato Milanese, Milano, Italy; [email protected]
2University of Perugia, Via Giorgio Amendola 59, Acquasparta, Terni, 05021, Italy; [email protected]
ABSTRACT
The Pleistocene Saturnia travertine (central Italy) represents a possible analog of the pre-salt continental carbonate reservoirs discovered in the Santos and other basins in the South Atlantic margin of Brazil. Two subhorizontal travertine tabular bodies, several tens of meters thick and extending over an area of (), have been studied in two quarries. Facies variations and associated petrophysical properties were reconstructed applying a multidisciplinary approach. The Saturnia travertine, formed from a warm water spring, is composed of various stacked carbonate banks, separated by subaerial erosive phases and paleosols. The lacustrine tabular bodies, terraces, and sills are made of crystalline crust, shrub, pisoid, paper-thin raft, coated bubble, reed, and lithoclast-breccia facies. The (from +4‰ to +8‰) supports an interpreted volcanic mantle source, whereas, the (from −9‰ to −5‰) is in agreement with warm meteoric waters. The ratio isotopic signature indicates a carbonate from dissolution of deep-seated carbonates. The facies reservoir properties were studied via porosity and permeability analysis of plugs, three-dimensional x-ray computer tomography, as well as image analysis on microscale under thin section and macroscale on large rock slabs to define various porosity indices. A strong heterogeneity of the petrophysical properties and variable connectivity were observed (porosity from 4% to 30% and permeability up to hundreds of md), but no compartmentalization of the carbonate bodies is present.
Pay-Per-View Purchase Options
The article is available through a document delivery service. Explain these Purchase Options.
Watermarked PDF Document: $14 | |
Open PDF Document: $24 |
AAPG Member?
Please login with your Member username and password.
Members of AAPG receive access to the full AAPG Bulletin Archives as part of their membership. For more information, contact the AAPG Membership Department at [email protected].