About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

AAPG Bulletin

Abstract

DOI: 10.1306/01271513101

Advances in grain-size, mineral, and pore-scale characterization of lithic and clay-rich reservoirs

K. E. Higgs,1 M. J. Arnot,2 and S. Brindle3

1GNS Science, 1 Fairway Drive, Avalon, P.O. Box 30 368, Lower Hutt, New Zealand; [email protected]
2GNS Science, 1 Fairway Drive, Avalon, P.O. Box 30 368, Lower Hutt, New Zealand; [email protected]
3Robertson UK Ltd., Tyn-y-Coed, Pentywyn Road, Llandudno LL30 1SA, United Kingdom; [email protected]

ABSTRACT

Clay- and lithic-rich sandstones are difficult to characterize through uncored well sections in terms of their grain size, porosity, and mineralogy, all of which are required for assessing reservoir quality and production performance. This paper presents results from a study through one such interval and shows how a combination of different techniques can be used to better understand rock properties of complex reservoirs, thereby helping to reduce reservoir uncertainty.

In this study, mean data from laser grain-size analysis are comparable to point-counted grain size, and both are considered as viable analytical methods. Automated quantitative evaluation of minerals by scanning electron microscopy (QEMSCAN®) provides a further useful and consistent grain-size measurement that can be applied to both core and cuttings samples. The QEMSCAN has also proved to be a valuable technique in the mineralogical analysis of sandstones that are lithic, clay- and feldspar-rich, eliminating the subjective nature that is inherent with optical analysis.

Results from the studied interval show that porosity measured by conventional core analysis (CA) and mercury injection capillary pressure (MICP) analysis are generally comparable with log-derived total porosity. Porosity measured from point-counting and QEMSCAN techniques is significantly lower than total porosity, with the QEMSCAN porosity locally equivalent to log-derived effective porosity. Both point-count and QEMSCAN porosities show better correlations with permeability (BLTN13101eq1 and 0.94, respectively) than total porosity values (BLTN13101eq2 and 0.60 CA and MICP, respectively), suggesting that they might provide a measure of effective porosity in high-quality reservoir rocks.

Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Protected Document: $10
Internal PDF Document: $14
Open PDF Document: $24

AAPG Member?

Please login with your Member username and password.

Members of AAPG receive access to the full AAPG Bulletin Archives as part of their membership. For more information, contact the AAPG Membership Department at [email protected].