About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

AAPG Bulletin

Abstract

AAPG Bulletin, V. 100, No. 12 (December 2016), P. 1775-1801.

Copyright ©2016. The American Association of Petroleum Geologists. All rights reserved.

DOI: 10.1306/05131614229

Geologically constrained electrofacies classification of fluvial deposits: An example from the Cretaceous Mesaverde Group, Uinta and Piceance Basins

Daniel B. Allen,1 and Matthew J. Pranter2

1Department of Geological Sciences, University of Colorado, 2200 Colorado Avenue, Boulder, Colorado 80309; present address: Apache Corporation, 2000 Post Oak Blvd #100, Houston, Texas 77056; [email protected]
2ConocoPhillips School of Geology and Geophysics, University of Oklahoma, 100 E. Boyd Street, Sarkeys Energy Center, Norman, Oklahoma 73019; [email protected]

ABSTRACT

Statistical classification methods consisting of the k-nearest neighbor algorithm (k-NN), a probabilistic clustering procedure (PCP), and a novel method that incorporates outcrop-based thickness criteria through the use of Previous HitwellNext Hit Previous HitlogNext Hit indicator flags are evaluated for their ability to distinguish fluvial architectural elements of the upper Mesaverde Group of the Piceance and Uinta Basins as distinct electrofacies classes. Data used in training and testing of the classification methods come from paired cores and Previous HitwellNext Hit logs consisting of 1626 wireline Previous HitlogNext Hit curve samples each associated with a known architectural element classification as determined from detailed sedimentologic Previous HitanalysisNext Hit of cores (N = 9). Thickness criteria are derived from outcrop-based architectural element measurements of the upper Mesaverde Group. Through an approach that integrates select classifier results with thickness criteria, an overall accuracy (number of correctly predicted samples/total testing samples) of 83.6% was achieved for a four-class fluvial architectural element realization. Architectural elements were predicted with user’s accuracies (accuracy of an individual class) of 0.891, 0.376, 0.735, and 0.985 for the floodplain, crevasse splay, single-story channel body, and multistory channel body classes, respectively. Without the additional refinement by incorporation of thickness criteria, the k-NN and PCP classifiers produced similar results. In both the k-NN and PCP techniques, the combination of gamma ray and bulk density wireline Previous HitlogTop curves proved to be the most useful assemblage tested.

Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Watermarked PDF Document: $14
Open PDF Document: $24

AAPG Member?

Please login with your Member username and password.

Members of AAPG receive access to the full AAPG Bulletin Archives as part of their membership. For more information, contact the AAPG Membership Department at [email protected].