About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

AAPG Bulletin

Abstract

DOI: 10.1306/07131615228

Pore pressure and stress Previous HitregimeNext Hit in a thick extensional basin with active shale diapirism (western Mediterranean)

Fermín Fernández-Ibáñez,1 and Juan I. Soto2

1Departamento de Geodinámica and Instituto Andaluz de Ciencias de la Tierra, Universidad de Granada - Consejo Superior de Investigaciones Científicas, Av. Fuentenueva s/n, 18071 Granada, Spain; present address: ExxonMobil Upstream Research Company, 22777 Springwoods Village Parkway, Spring, Texas 77389; [email protected]
2Departamento de Geodinámica and Instituto Andaluz de Ciencias de la Tierra, Universidad de Granada - Consejo Superior de Investigaciones Científicas, Av. Fuentenueva s/n, 18071 Granada, Spain; [email protected]

ABSTRACT

The Alboran Sea in the Mediterranean is a back-arc basin developed during the Miocene by extensional collapse within an arc-shaped orogen. A major depocenter (>10 km [>6.2 mi]) is located to the west of the basin (West Alboran Basin [WAB]) and contains a diapiric province with overpressured shales and mud volcanoes. Seismic and well data are used to analyze the evolution of the shale structures in the northern margin of the WAB and to estimate the in situ stress tensor. Geomechanical modeling suggests a present-day normal faulting stress Previous HitregimeTop along the northern WAB, where the maximum horizontal stress is parallel to the coastline. Pore pressure shows a hydrostatic gradient down to 2000 m (6561 ft), where the top of the regional pore pressure ramp is located. Undercompaction is the dominant mechanism generating overpressures in sediments shallower than 5000 m (16,406 ft). At greater depths, thermal mechanisms impose an excess of pore pressure on the sediments feeding the diapirs. This framework is used to discuss the contribution of thermally generated pressures to the triggering of shale diapirism. Increasing thermal pressures in the deepest confined units cause tensile failure of the overburden and subsequently promote mud withdrawal and injection in the overburden. The magnitude of the overpressure conditions the vertical ascent of shale. The more mature structures reuse preexisting normal faults in their ascent toward shallower basin levels. Results provide insights into the current discussion about the triggering factors behind shale diapirism. They also help to explain the differences between shale structures and those shaped by salt tectonics.

Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Watermarked PDF Document: $14
Open PDF Document: $24

AAPG Member?

Please login with your Member username and password.

Members of AAPG receive access to the full AAPG Bulletin Archives as part of their membership. For more information, contact the AAPG Membership Department at [email protected].