About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

AAPG Bulletin

Abstract

AAPG Bulletin, V. 101, No. 6 (June 2017), P. 907-936.

Copyright ©2017. The American Association of Petroleum Geologists. All rights reserved. Green Open Access. This paper is published under the terms of the CC-BY license.

DOI: 10.1306/09021615184

Source-to-sink sediment delivery in the Gulf of Papua from scanning electron microscopy and mineral liberation analysis–aided provenance analysis of deep-sea turbidite sands

Erlangga Septama,1 and Samuel J. Bentley Sr.2

1Department of Earth Sciences, Memorial University of Newfoundland, St. John’s, Alexander Murray Building, 9 Arctic Avenue, Newfoundland and Labrador, Canada A1B3X5; present address: Pertamina EP, asset-5, Standard Chartered Building 23rd Floor, Room 164, Jakarta, Indonesia JKS 12930; [email protected]
2Department of Geology and Geophysics, and Coastal Studies Institute, E235 Howe Russell Geoscience Complex, Louisiana State University, Baton Rouge, Louisiana, 70803; [email protected]

ABSTRACT

Provenance of Pleistocene–Holocene deepwater sediments in the Gulf of Papua (National Science Foundation Source to Sink Focus Area) has been studied to understand sediment sources and glacioeustatic influences on sedimentary routing and to better understand processes controlling sediment sources and delivery. We show how diverse processes operate in a complex deep-sea environment over time to control sediment routing and accumulation. Quantitative detrital analyses were conducted on 53 turbidite sand and 3 terrestrial samples with scanning electron microscopy and mineral liberation analysis, which yielded a broader and more insightful classification than manual point counts. We determined that (1) multiple terrestrial sediment sources along an approximately 500-km (300-mi) basin margin converged to form one continuous deep-sea system in two major basins (>30 cal [calibrated] ka); (2) subsequent sea level fall near the last glacial maximum (LGM) (18–22 cal ka) drove repartitioning of sediment sources to create multiple distinct depocenters, presumably caused by migration and incision of individual rivers across the newly exposed coastal plain; and (3) multiple separate deep-sea channels then regained compositional similarity near the end of the LGM. In the subsequent Holocene, deepwater sand transport shut down, except for one locality where delivery continues because of a combination of narrow shelf–slope setting, oceanographic processes, and additional volcanic supply. These findings highlight the diverse processes that must be considered for the development of deepwater petroleum systems, in terms of sediment delivery, deposition, and provenance that may affect the reservoir geometry and quality.

Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Watermarked PDF Document: $14
Open PDF Document: $24

AAPG Member?

Please login with your Member username and password.

Members of AAPG receive access to the full AAPG Bulletin Archives as part of their membership. For more information, contact the AAPG Membership Department at [email protected].