About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

AAPG Bulletin

Abstract

DOI: 10.1306/09011608160

Sequence stratigraphic evolution of the Mensa and Thunder Horse intraslope basins, northern deep-water Gulf of Mexico—Lower Cretaceous through upper Miocene (8.2 Ma): A case study

Paul Weimer,1 Renaud Bouroullec,2 Todd G. Lapinski,3 Aaron A. van den Berg,4 Raquel Cepeda,5 John G. Roesink,6 and Mike Leibovitz7

1Energy and Applied Minerals Research Center, Department of Geological Sciences, University of Colorado, Boulder, Colorado 80309; [email protected]
2Energy and Applied Minerals Research Center, Department of Geological Sciences, University of Colorado, Boulder, Colorado 80309; present address: Petroleum Geosciences, TNO, Princetonlaan 6, 3584 CB Utrecht, The Netherlands; [email protected]
3Energy and Applied Minerals Research Center, Department of Geological Sciences, University of Colorado, Boulder, Colorado 80309; present address: BP Exploration, 501 Westlake Parkway, Houston, Texas 77079; [email protected]
4Energy and Applied Minerals Research Center, Department of Geological Sciences, University of Colorado, Boulder, Colorado 80309; present address: Anadarko Petroleum, 1201 Lake Robbins Drive, The Woodlands, Texas 77380; [email protected]
5Energy and Applied Minerals Research Center, Department of Geological Sciences, University of Colorado, Boulder, Colorado 80309; present address: Peonia Music, P.O. Box 940217, Houston, Texas 77094; [email protected]
6Energy and Applied Minerals Research Center, Department of Geological Sciences, University of Colorado, Boulder, Colorado 80309; present address: Jagged Peak Energy, 1125 17th Street, Suite 2400, Denver, Colorado 80202; [email protected]
7Energy and Applied Minerals Research Center, Department of Geological Sciences, University of Colorado, Boulder, Colorado 80309; present address: Caerus Oil and Gas, 600 17th Street, Denver, Colorado 80202; [email protected]

ABSTRACT

Thunder Horse and Mensa are two of the largest fields of oil or gas, respectively, in the northern deep-water Gulf of Mexico. The fields are present in adjacent intraslope minibasins, located approximately 12 mi (19 km) apart in Mississippi Canyon. Both fields illustrate important complexities of deep-water sedimentation. Analysis is based on the integration of wire-line logs, biostratigraphy, and a 378-mi2 (979-km2), three-dimensional seismic data set.

Thunder Horse and Mensa reservoirs were deposited during the middle to late Miocene. Changes in paleobathymetry controlled the reservoir deposition, initially as salt withdrawal and later as turtle structures. From 125 to 24 Ma, the lithologies in both intraslope basins are interpreted as dominantly deep-water marls with interbedded shales. From 24 to 14.35 Ma, major input of deep-water siliciclastic sediments began. Sands were deposited in amalgamated sheets and amalgamated channel-fill units within the two major paleobathymetric lows; by contrast, shales were deposited across paleobathymetric highs. Between 14.35 and 13.05 Ma, the Thunder Horse turtle formed, creating a paleobathymetric high. Channelized sands were diverted around and deposited on the flanks of the structure. Meanwhile, to the north at Mensa, thick channel-fill sediments continued to be deposited. From 12.2 to 8.2 Ma, the lithologies throughout the entire area are dominantly overbank shales with thin channel-fill sands, suggesting that large volumes of sand bypassed the study area farther downslope to the south. Finally, at 9.0 Ma, Mensa's sheet-sand reservoir represents a different setting; sands were deposited near the crest of the Mensa turtle, which had subtle bathymetric expression.

Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Watermarked PDF Document: $14
Open PDF Document: $24

AAPG Member?

Please login with your Member username and password.

Members of AAPG receive access to the full AAPG Bulletin Archives as part of their membership. For more information, contact the AAPG Membership Department at [email protected].