About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

AAPG Bulletin

Abstract

AAPG Bulletin, V. 101, No. 11 (November 2017), P. 1859-1877.

Copyright ©2017. The American Association of Petroleum Geologists. All rights reserved.

DOI: 10.1306/02071716191

Gulf of Mexico overpressure and clay diagenesis without unloading: An anomaly?

Richard W. Lahann1

1Indiana Geological Survey, 611 North Walnut Grove Avenue, Bloomington, Indiana 47405; [email protected]

ABSTRACT

Compaction disequilibrium is a widely accepted cause of overpressure, especially in clay-rich, rapidly deposited sediments. Clay diagenesis has been associated with the occurrence of overpressure greater than the compaction disequilibrium overpressure. These observations have led to the expectation that overpressure will be greater than the compaction disequilibrium contribution when clay diagenesis occurs within an overpressured mudstone.

Clay diagenesis have been reported in a Pliocene section of a well from the Gulf of Mexico, offshore Louisiana. Pressure and log data from that well indicate that despite clay diagenesis, the overpressure can be attributed solely to compaction disequilibrium.

This paper examines the whole mudstone and clay mineralogy composition and petrophysical characteristics of the offshore Louisiana well with clay diagenesis, but without a diagenesis contribution to overpressure and contrasts that data with results from other clay diagenesis and petrophysical studies. The comparison suggests that the offshore Louisiana well was relatively smectite poor compared with wells from regions associated with a clay diagenesis contribution to overpressure. The lower smectite content resulted in a lower percentage of reacted volume that was insufficient to allow the load transfer often associated with clay diagenesis. Petrophysical features of the offshore Louisiana well and nearby wells differ from the features associated with clay diagenesis in other Gulf of Mexico wells and a limited number of international wells.

Comparison of location, age, depositional package, clay mineralogy, and petrophysical features suggests that provenance may control the occurrence of Gulf of Mexico mudstones that do not experience increased overpressure as a result of clay diagenesis.

Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Watermarked PDF Document: $14
Open PDF Document: $24

AAPG Member?

Please login with your Member username and password.

Members of AAPG receive access to the full AAPG Bulletin Archives as part of their membership. For more information, contact the AAPG Membership Department at [email protected].