About This Item
- Full TextFull Text(subscription required)
- Pay-Per-View PurchasePay-Per-View
Purchase Options Explain
Share This Item
The AAPG/Datapages Combined Publications Database
AAPG Bulletin
Abstract
AAPG Bulletin, V.
DOI: 10.1306/02282018111
Seal
failure assessment of a major gas field via integration of
seal
properties and
leakage
phenomena






M. Foschi,1 and J. A. Cartwright2
1Shell Geoscience Laboratory, Department of Earth Sciences, University of Oxford, Oxford, United Kingdom; martinof@earth.ox.ac.uk
2Shell Geoscience Laboratory, Department of Earth Sciences, University of Oxford, Oxford, United Kingdom; joec@earth.ox.ac.uk
ABSTRACT
We present a seismic- and well-based interpretation of a large leakage
zone above the Scarborough gas field, Exmouth plateau, North West shelf of Australia. This
leakage
zone, well imaged on three-dimensional seismic data, extends over a region of 100 km2 (39 mi2), encompassing both the crest and flanks of the anticlinal trap, and is termed here as distributed crestal
leakage
. The present-day gas–water contact is 85 m (278 ft), and the spillpoint is 110 m (328 ft) below the crest, implying that the trap is underfilled at present. The
leakage
zone comprises more than 500 pockmarks at the present-day seabed with no crosscutting or cannibalization, suggesting that they formed in a short interval of time. These are underlain by sediment remobilization features and amplitude anomalies, consistent with a relatively high flux
leakage
of gas from the underlying Cretaceous deep-water sand-rich reservoir. By analyzing the geometrical relationship between the
leakage
zone, the top-
seal
properties, and the gas–water contact, we conclude that the mode of
leakage
in this specific setting is not the result of gradual addition of gas charge but is instead consistent with a sudden increase of aquifer overpressure. We suggest two alternative models for
seal
failure in this case study: a conservative model consistent with a modest but rapid increase in aquifer overpressure leading to
membrane
seal
failure and a model dominated by high aquifer overpressure leading to
leakage
through hydraulically dilated faults and fractures.
Pay-Per-View Purchase Options
The article is available through a document delivery service. Explain these Purchase Options.
Watermarked PDF Document: $14 | |
Open PDF Document: $24 |
AAPG Member?
Please login with your Member username and password.
Members of AAPG receive access to the full AAPG Bulletin Archives as part of their membership. For more information, contact the AAPG Membership Department at members@aapg.org.