About This Item
- Full TextFull Text(subscription required)
- Pay-Per-View PurchasePay-Per-View
Purchase Options Explain
Share This Item
The AAPG/Datapages Combined Publications Database
AAPG Bulletin
Abstract
DOI: 10.1306/07072019196
The preservation of water-table caves at depth: Observations from subsurface data and numerical modeling
Andrea Nolting,1 P. J. Moore,2 Janelle Homburg,3 and Fermín Fernández-Ibáñez4
1ExxonMobil Upstream Research Company, Spring, Texas; [email protected]
2ExxonMobil Upstream Research Company, Spring, Texas; [email protected]
3ExxonMobil Upstream Research Company, Spring, Texas; [email protected]
4ExxonMobil Upstream Research Company, Spring, Texas; [email protected]
ABSTRACT
Carbonate rocks commonly exhibit multiscale pore networks because of the interplay of depositional, diagenetic, and structural controls. This interplay commonly leads to carbonate reservoirs with complex pore networks that affect our ability to accurately characterize reservoir quality and be predictive about in-place volumes and hydrocarbon recovery. In particular, the preservation of paleocavern systems can present unique challenges when characterizing carbonate reservoirs because of the difficulty in determining how these large pore systems are distributed and to what degree they remain open during burial. Recognizing the processes by which these caves develop provides key insight into predicting their distribution within the subsurface; however, whether or not such caves are capable of remaining open during burial and at depth remains controversial. This study investigates the preservation potential of water-table caves that have developed in near-surface conditions (i.e., eogenetic coastal karst) and have undergone significant burial by constructing geomechanical finite numerical models. Modeling results suggest that when water-table caves are filled with a fluid, such as water, within the shallow phreatic realm, they can remain open past burial depths of 10,000 m. Conversely, if for some reason a cave is unfilled with a fluid and buried, it experiences total collapse at depths of approximately 1000 m. These results suggest that there is a large preservation potential for water-table caves to remain open and intact at depth, resulting in an additional contribution of pore volume for in-place calculations within oil and gas reservoirs that often are overlooked.
Pay-Per-View Purchase Options
The article is available through a document delivery service. Explain these Purchase Options.
Watermarked PDF Document: $14 | |
Open PDF Document: $24 |
AAPG Member?
Please login with your Member username and password.
Members of AAPG receive access to the full AAPG Bulletin Archives as part of their membership. For more information, contact the AAPG Membership Department at [email protected].