About This Item
- Full TextFull Text(subscription required)
- Pay-Per-View PurchasePay-Per-View
Purchase Options Explain
Share This Item
The AAPG/Datapages Combined Publications Database
AAPG Bulletin
Abstract
AAPG Bulletin, V.
Sealing mechanisms in volcanic faulted reservoirs in Xujiaweizi extension, northern Songliao Basin, northeastern China
Bo Liu,1 Songlin He,2 Lingdong Meng,3 Xiaofei Fu,4 Lei Gong,5 and Haixue Wang6
1Key Laboratory of Continental Shale Hydrocarbon Accumulation and Efficient Development, Ministry of Education, Northeast Petroleum University, Daqing, China; College of Resources and Environment, Yangtze University, Wuhan, China; present address: Institute of Unconventional Oil and Gas, Daqing, China; [email protected]
2PetroChina Daqing Oilfield Company, Daqing, China; Key Laboratory of Continental Shale Hydrocarbon Accumulation and Efficient Development, Ministry of Education, Northeast Petroleum University, Daqing, China; [email protected]
3Key Laboratory of Continental Shale Hydrocarbon Accumulation and Efficient Development, Ministry of Education, Northeast Petroleum University, Daqing, China; [email protected]
4Key Laboratory of Continental Shale Hydrocarbon Accumulation and Efficient Development, Ministry of Education, Northeast Petroleum University, Daqing, China; [email protected]
5Key Laboratory of Continental Shale Hydrocarbon Accumulation and Efficient Development, Ministry of Education, Northeast Petroleum University, Daqing, China; [email protected]
6Key Laboratory of Continental Shale Hydrocarbon Accumulation and Efficient Development, Ministry of Education, Northeast Petroleum University, Daqing, China; [email protected]
ABSTRACT
Distribution of volcanic reservoirs in Xujiaweizi half graben is controlled by both faults and sealing layers where their integrity could have been compromised. This paper documents the distribution of sealing units of the Denglouku and Yingcheng Formations based on seismic and well-log data to delineate all of the reservoirs with proper cap rocks within the volcanic Yincheng Formation via the relationship between the fault system and reservoir rocks. Based on the regional sealing effect of Denglouku Formation, two hydrocarbon traps are identified: the lower primary and upper secondary gas reservoirs where the formation with a mudstone percentage of more than 50% within the second member seals the primary reservoirs. The upper secondary trap is controlled by faults that have been activated during the structural reversal phase, causing the regional sealing layers in the Denglouku Formation to get displaced with a cap rock juxtaposition thickness of less than 35 m. This has created a series of fault-seal, dual-control reservoirs. The local seals within the Yingcheng Formation consist of mudstone, tight volcanic rock, and clayey breccia covering each volcanic eruption cycle. These local seals separate the volcanic gas reservoirs with a minimum thickness of 20 m. The local top seals in this tectonically active zone were placed on the hanging wall via the juxtaposition of the reservoir and overlying mudstone and/or clayey breccia. It was concluded that gas has migrated vertically through the faults and accumulated in the fault-controlled traps where sharp changes in the lithology (juxtaposition) form the seal, whereas the gas-water contact is controlled by the depth of the reservoir rock. Finally, this study concludes that the primary reservoirs are distributed in a sinusoidal configuration around the fault zone because of the dolphin effect of the Xuzhong strike-slip fault system that has connected the source and reservoir rocks.
Pay-Per-View Purchase Options
The article is available through a document delivery service. Explain these Purchase Options.
Watermarked PDF Document: $14 | |
Open PDF Document: $24 |
AAPG Member?
Please login with your Member username and password.
Members of AAPG receive access to the full AAPG Bulletin Archives as part of their membership. For more information, contact the AAPG Membership Department at [email protected].