About This Item
- Full TextFull Text(subscription required)
- Pay-Per-View PurchasePay-Per-View
Purchase Options Explain
Share This Item
The AAPG/Datapages Combined Publications Database
AAPG Bulletin
Abstract
AAPG Bulletin, V.
DOI: 10.1306/10242221142
Classification of elemental chemofacies as indicators of cement diagenesis in mudrocks of the Permian Spraberry Formation and Wolfcamp formation, western Texas
Autumn L. Eakin,1 Julia S. Reece,2 Kitty L. Milliken,3 Robert Locklair,4 and Andrew P. Rathbun5
1Department of Geology and Geophysics, Texas A&M University (TAMU), College Station, Texas; present address: Chevron Technical Center (CTC), Houston, Texas; [email protected]
2Department of Geology and Geophysics, TAMU, College Station, Texas; [email protected]
3Bureau of Economic Geology, Jackson School of Geosciences, Austin, Texas; [email protected]
4CTC, Houston, Texas; [email protected]
5CTC, Richmond, California; [email protected]
Abstract
Mineralogical composition is a primary control on the mechanical strength of tight mudrock reservoirs and is a critical rock property in the identification of intervals for hydraulic fracturing. The x-ray fluorescence (XRF) spectroscopy and x-ray diffraction (XRD) analyses were conducted on mudrocks from the Permian Wolfcamp formation and Spraberry Formation, Midland Basin, Texas, to study their chemical composition and potential impact on mechanical rock properties. Additionally, we use a combination of thin-section petrography, scanning electron microscopy, and mineral segmentation mapping to document rock texture, especially the amount and distribution of quartz and calcite cements. We find that samples dominated by extrabasinal grain components show isolated clusters of intergranular cementation in grain-supported packing arrangements, whereas samples dominated by intrabasinal grain components show pervasive cementation in matrix-supported grain assemblages. We present a novel workflow using correlative relationships between elemental Si, Al, and Ca to classify mudrocks into chemofacies and predict which chemofacies are cement prone. This workflow identifies four XRF-based chemofacies for the Wolfcamp and Spraberry mudrocks: (1) abundant siliciclastic detrital grain components, (2) intergranular calcite cement, (3) abundant quartz and calcite cement, and (4) pervasive microcrystalline quartz cement. Results show that cement-prone facies of the Wolfcamp and Spraberry, particularly chemofacies 2, correlate to high elastic response and represent the strongest core materials. Our workflow can be applied to any mudrock system with available compositional data sets, such as XRF, XRD, or Fourier transform infrared spectroscopy, aiding in the prediction of mechanical mudrock properties and the development of brittle fractures in unconventional reservoirs.
Pay-Per-View Purchase Options
The article is available through a document delivery service. Explain these Purchase Options.
Watermarked PDF Document: $14 | |
Open PDF Document: $24 |
AAPG Member?
Please login with your Member username and password.
Members of AAPG receive access to the full AAPG Bulletin Archives as part of their membership. For more information, contact the AAPG Membership Department at [email protected].