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ABSTRACT

The Mesoproterozoic Velkerri and Kyalla Formations in the
Beetaloo Sub-basin in northern Australia contain the world’s old-
est shale plays. In unconventional exploration, the main challenge
is the identification of sweet spots from which hydrocarbons can
be produced economically. In fine-grained siliciclastic intervals,
the distribution of these sweet spots is controlled mainly by the
evolution of the sedimentary system and its effects on organic mat-
ter distribution. This work reconstructs the stratigraphic architec-
ture of the Velkerri-Kyalla interval and integrates its interpreted
stratigraphic evolution with chemostratigraphic and chronostrati-
graphic data sets. Based on core descriptions and well correlations,
we reconstructed the facies distribution within the Velkerri-Kyalla
interval along two regional well sections. This allowed stratigraphic
stacking patterns to be observed and multiple depositional
sequences to be identified. Three stratigraphic orders are observed
within the Velkerri-Kyalla Formations. The studied interval is
interpreted to comprise one second-order depositional sequence
that contains four nested third-order depositional sequences.
These, in turn, are composed of 13 nested fourth-order
transgressive–regressive sequences. By integrating the sequence
stratigraphic architecture with available geochronological con-
straints, we postulate a chronostratigraphic framework for these
Mesoproterozoic strata. The Velkerri Formation was likely depos-
ited between 1420 and 1300 Ma and the overlying Kyalla For-
mation between 1270 and 1210 Ma. Furthermore, by coupling
the sequence stratigraphy, chemostratigraphy, existing provenance
studies, and chronostratigraphy, we were able to construct regional
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paleogeographic maps to illustrate the evolution of the basin in
the broader context of the Mesoproterozoic of northern Australia.

INTRODUCTION

Sweet spots in unconventional plays are formed by the
co-occurrence of three elements: (1) hydrocarbon enrichment,
(2) suitable geomechanical properties leading to fracture con-
ductivity, and (3) good reservoir drive (Ottmann and Bohacs,
2014). This means that economic plays consist of hydrocarbon-
bearing intervals with suitable reservoir conditions to recover
high volumes of oil and/or gas after hydraulic stimulation. Two
elements directly relate to the distribution of sedimentary het-
erogeneities in the play: hydrocarbon enrichment and geomecha-
nical properties that are both controlled by the sedimentary
facies, including mineral and organic contents. Consequently,
understanding the distribution of sedimentary heterogeneities is
critical when predicting the distribution of sweet spots in self-
sourced reservoirs. In frontier exploration, the scale of the sedi-
mentary heterogeneities that control the distribution and quality
of these reservoirs is often subseismic (<40 m). Therefore, seis-
mic reflection data are suitable only to constrain the top and base
of a play, and exploration largely relies on the interpretation of
well data to understand the stratigraphic evolution and to predict
areas of higher prospectivity.

The increasing interest in shale plays and the development
of model-independent sequence stratigraphy (Catuneanu, 2006,
2019a; Catuneanu et al., 2009, 2010) have resulted in numerous
basin-scale studies of fine-grained siliciclastic rocks (Passey et al.,
2010; Kietzmann et al., 2014; Kohl et al., 2014; Borcovsky
et al., 2017; Byun et al., 2018; Crombez et al., 2019; Knapp et al.,
2019). These studies mainly focused on understanding the distri-
bution of sedimentary facies and their stacking patterns (e.g., Van
Buchem et al., 2005) and on defining or refining a stratigraphic
framework (e.g., Smith and Bustin, 2000; Angulo and Buatois,
2012; Borcovsky et al., 2017). Important for exploration, under-
standing the stratigraphic architecture of a play allows its poten-
tial seismic expression to be tested (e.g., Zeller et al., 2015) and is
also a prerequisite for sweet spot prediction using process-based
models (e.g., Crombez et al., 2017).

Unconventional shale reservoir exploration in Australia cur-
rently focuses on theMesoproterozoic Beetaloo Sub-basin located
in northern Australia (Figure 1). Map-based estimates of the
resources suggest 899 billion bbl (P50, or median estimates) of oil
in place (OIP) for the Kyalla Formation and 85 billion bbl (P50)
of OIP and 208 TCF (P50) of gas in place in the Amungee Mem-
ber of the Velkerri Formation (Revie, 2017b). Although this
resource potential has stimulated significant exploration activity
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(Hoffman, 2015; Close et al., 2017; Sheridan et al., 2018; Bruce
and Garrad, 2021), the high-resolution, basin-scale stratigraphic
architecture of this Mesoproterozoic interval has not yet been
published.

Here, we reconstruct the stratigraphic architecture of the
Velkerri and Kyalla Formations and the Moroak Sandstone in the
Beetaloo Sub-basin. Using publicly available wire-line log and geo-
chemical data from wells arranged along north-south and east-west
cross sections we (1) reconstruct the spatial and stratigraphic facies
distribution, (2) identify stacking patterns, and (3) reconstruct a
sequence stratigraphic framework. This process allows us to assess
the controls on the sedimentary architecture, integrate the cyclicity
in chrono- and chemostratigraphic frameworks, and discuss the
basin-scale paleogeographic evolution of the Beetaloo Sub-basin.

GEOLOGICAL BACKGROUND

The Greater McArthur Basin and the Beetaloo Sub-basin

The greater McArthur Basin is an inclusive definition of the
Paleoproterozoic–Mesoproterozoic sedimentary basins located in
the Northern Territory of Australia (Rawlings, 1999; Ahmad
et al., 2013; Close, 2014). The thickest parts of the basin are
thought to exceed 12 km (Figure 1; Frogtech Geoscience, 2018)
and are located in structurally complex areas and the area defined
as the Beetaloo Sub-basin (Beetaloo). The Beetaloo was first
defined as a subbasin based on gravity and magnetic anomalies
(Jackson et al., 1987; Plumb and Wellman, 1987). Today, this
concealed subbasin is interpreted to extend over more than
60,000 km2. The limits of the Beetaloo Sub-basin have been
recently updated and formalized by the Northern Territory Geo-
logical Survey and have been constrained using lithostratigraphic
data from wells tied to stratigraphic interpretations of the avail-
able two-dimensional (2-D) seismic surveys (Williams, 2019).
Accordingly, the subbasin boundary is currently defined using the
top of the Kyalla Formation, constrained by a cutoff depth of
400 m below the surface (Williams, 2019). It is noted that the
current definition does not correspond to the extent of the sedi-
ments of interest for hydrocarbon exploration, and hydrocarbon
plays have been identified beyond the extent of the geophysically
defined boundary (Bruce and Garrad, 2021).

The Beetaloo lies on the North Australian craton (NAC) and
is bound to the north by the Batchelor and Urapunga fault zones,
to the east by the Batten fault zone and the Murphy high, to the
south by the Helen Springs high, and the west by the Birrindudu
Basin. It comprises three distinct depocenters, including the east-
ern Beetaloo depocenter separated from the western Beetaloo
depocenter by the Daly Waters high and the OT Downs
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depocenter (Figure 1). Although the petroleum
wells and regional seismic data highlight relatively
flat-lying Proterozoic strata (Figure 2A), the greater
McArthur Basin fill records the formation and
breakup of different supercontinents (e.g., Myers
et al., 1996; Pisarevsky et al., 2014; Mulder et al.,
2015; Meert and Santosh, 2017). Its stratigraphy is
traditionally subdivided into four nongenetic
packages; the youngest package is theWilton package
and comprises the Roper Group (Rawlings, 1999).
Geochronology studies based on detrital zircons,
Re-Os analyses, and dating of intrusions suggest
Mesoproterozoic ages for the Roper Group (Jackson
et al., 2000; Kendall et al., 2009; Yang et al., 2018),

which contains the Velkerri and Kyalla Formations
(Figure 2B). This interval mainly comprises siliciclas-
tic sedimentary rocks (Powell et al., 1987; Donnelly
and Crick, 1988; Jackson et al., 1988; Abbott and
Sweet, 2000; Munson, 2016) that have been intruded
by Mesoproterozoic dolerite dykes and sills (Tucker
and Boyd, 1987; Abbott et al., 2001).

Paleogeographic reconstructions suggest that the
NAC occupied a position at approximately 30�N
during the deposition of the Roper Group (Pisarevsky
et al., 2014; Meert and Santosh, 2017). At the
time, the NAC was located to the east of western
Laurentia. In these geodynamical reconstructions,
the deposition of the Roper Group is linked to the
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breakup of the Nuna supercontinent and the initia-
tion of a rift system between Laurentia and the
NAC (Mulder et al., 2015). The major unconformity
at the base of the Roper Group is attributed to
the Isan Orogeny (de Vries et al., 2008; Blaikie and
Kunzmann, 2020) and includes the inversion of
preexisting structures (Lindsay, 2001). Although
the deposition of the Roper Group started in an
active geodynamical setting, most recent studies
suggest that an intracratonic setting influenced by
flexural tectonics was responsible for the deposition
of the interval comprising the Velkerri to Kyalla
Formations (Lanigan et al., 1994; Abbott and
Sweet, 2000).

The Velkerri-Kyalla Interval

The Velkerri and Kyalla Formations and Moroak
Sandstone occur in the upper part of the Roper

Group (Figure 2B). The Velkerri Formation is divided
into three members, from oldest to youngest: the
Kalala, Amungee, and Wyworrie Members (Munson
and Revie, 2018). The exact duration and age of the
Velkerri Formation are still debated. The Re-Os dat-
ing suggests that the Velkerri Formation was depos-
ited from 1417 – 29 Ma to 1361 – 21 Ma (Kendall
et al., 2009); however, based on the results of detrital
zircon geochronology studies, Yang et al. (2018) pro-
posed maximum depositional ages of 1308 – 41 Ma
and 1313 – 47 Ma. More recent work by Yang et al.
(2020b) suggests that the Kyalla Formation was
deposited before 1092 – 16Ma.

The lithological characteristics of the Velkerri
and Kyalla Formations and Moroak Sandstone have
been extensively studied by Powell et al. (1987),
Munson (2016), and Munson and Revie (2018). The
Velkerri Formation is composed mainly of inter-
laminated and interbedded siltstone and claystone,
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with minor fine-grained sandstone and rare dolomi-
tized limestone. The conformably to unconformably
overlying Moroak Sandstone likely represents the
proximal part of the sedimentary system (Powell
et al., 1987; Warren et al., 1998; Abbott and Sweet,
2000). It consists predominantly of fine- to medium-
grained sandstone, interlayered with minor coarse-
grained sandstone, conglomerate, and siltstone
(Munson, 2016). The conformably overlying Kyalla
Formation is composed mainly of siltstone, silty
claystone, and rare occurrences of claystone. How-
ever, a thick sandstone interval, referred to as the
Elliott Sandstone Member, can be distinguished
between the lower and upper parts (Munson, 2016).

It is generally accepted that the Velkerri and
Kyalla Formations andMoroak Sandstone were depos-
ited on a continental shelf (Abbott and Sweet, 2000;
Munson, 2016), with depositional environments rang-
ing from shallow marine deltaic to offshore (Warren
et al., 1998), as evidenced by the characteristic sedi-
mentary features for wave- and fluvial-dominated
environments (Gorter and Grey, 2012; Munson,
2016; Sheridan et al., 2018).

Three organic-rich intervals, referred to as the A,
B, and C shales, occur in the Amungee Member of
the Velkerri Formation (Munson and Revie, 2018;
Cox et al., 2022). In addition, high organic carbon
contents have been reported in the lower Kyalla
Formation (Jarrett et al., 2019a, b). Recent bio-
marker studies indicate that the organic matter in
these sediments is derived from biomass dominated
by bacteria, with minor input from archaea and
eukaryotes (Jarrett et al., 2019a). Total organic car-
bon in individual shale units can exceed 12 wt. %,
with the present-day hydrogen index up to
800 mgHC.gTOC

�1 (Jarrett et al., 2019b). The ther-
mal maturity of the shales ranges from early mature
at the margins of the basin to dry gas mature in the
depocenters (Revie, 2017a), where the maximum
burial depth is estimated to reach 4000 m
(Faiz et al., 2021). Although older, organic-rich
rocks exist in the greater McArthur Basin (e.g.,
Wollogorang Formation: Spinks et al., 2016;
Kunzmann et al., 2020; Barney Creek Formation:
Kunzmann et al., 2019, 2022), the Velkerri and
Kyalla Formations and Moroak Sandstone are inter-
preted to be the source of the world’s oldest recov-
ered oil (Craig et al., 2013).

DATA SET AND METHODS

Data Set

Data from 32 wells were studied to reconstruct the
stratigraphic architecture of the Velkerri-Kyalla inter-
val. Among these wells, 25 intersected the Velkerri
Formation, 16 intersected the Moroak Sandstone,
and 19 intersected the Kyalla Formation (Appendix
Table 1 [supplementary material available as AAPG
Datashare 171 at www.aapg.org/datashare]). The
available gamma-ray (GR) logs were loaded in Easy-
Trace, well-log interpretation software distributed by
Beicip-Franlab, allowing for the creation of correla-
tion panels. In addition to the GR logs, cored intervals
from eight wells were studied for facies descriptions
(Appendix Table 2 [supplementary material avail-
able as AAPG Datashare 171 at www.aapg.org/
datashare]).

The Beetaloo Basin chemostratigraphic zonation
scheme was defined internally by Chemostrat Aus-
tralia on offset legacy wells using available elemental
data from the greater McArthur area (Chemostrat
Australia, 2014, 2016; Origin Energy Resources,
2015a, b, 2016; Cox et al., 2016; Munday, 2020;
Munday and Forbes, 2020). The wells correlated into
this scheme include Amungee NW 1, Beetaloo W 1,
Kalala South 1, McManus 1, Shenandoah 1, Alexan-
der 1, Scarborough 1, Lady Penrhyn 1, and Altree 2.
The elemental data (both major and trace elements)
used for the chemostratigraphic correlation across
these wells were derived from multiple operators
using a range of x-ray fluorescence (XRF) instruments
(both calibrated handheld XRF and laboratory XRF),
as well as inductively coupled plasma-optical emis-
sion spectrometry and inductively coupled plasma-
mass spectrometry analytical techniques.

Chemostratigraphy relies on the study of the
geochemical variation in sedimentary rocks, typically
being variable and sensitive to subtle shifts in prove-
nance region or mechanisms of deposition (e.g., sea-
water and organic matter interaction). Successions
that appear lithologically uniform often record varia-
tions in the geochemistry of their mineral compo-
nents or the abundance and proportions of accessory
minerals (e.g., heavy and clay minerals, some of
which have very distinctive trace element signatures).
Chemostratigraphy can define zones with similar
geochemical signatures and their correlations at
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various scales, analogous to a lithostratigraphic hier-
archical scheme.

Methods

Sedimentary and Well-Log Facies
High-resolution images of cores (from Hylogger data
sets) were accessed through the AuScope portal
(portal.auscope.org); from the images, 2430 m of
core distributed across eight wells were described.
Sedimentological descriptions at a 1:200 scale focused
on the identification of sedimentary structures and
textures to define a facies model (sensu Walker,
1992). Because not all wells cored the Velkerri and
Kyalla Formations and Moroak Sandstone, we inte-
grated our facies descriptions with well-log patterns
(sensu Posarnentier and Allen, 1999), placing particu-
lar focus on the GR logs (e.g., Crombez et al., 2016).
The GR logs were the most commonly acquired log
type during the 40 yr of drilling the wells. In the
Velkerri-Kyalla interval, the mineralogy mostly re-
flects terrigenous material, with very little carbonate
content observed (Revie, 2017a). Assuming that the
GR values approximate the abundance of K-rich
micas mostly present in fine-grained material in the
Velkerri-Kyalla interval, this log can be used to distin-
guish the proximal, more coarse-grained, sand-rich
environments from the fine-grained, distal part of the
sedimentary system. The GR logs can also help to
identify organic-rich marine intervals that are likely to
be enriched in U.

Sequence Stratigraphy
We reconstructed the stratigraphic architecture of
the Velkerri-Kyalla interval along two 2-D sections
(Figure 1). Using sedimentological descriptions and
GR logs to understand the distribution of sedimentary
environments and to identify stacking patterns, we
interpreted the sequence stratigraphic evolution
following a model-independent approach (sensu
Catuneanu et al., 2009, 2011; Catuneanu, 2019a).
We focused on shoreline trajectories (Helland-Hansen
and Martinsen, 1996; Helland-Hansen and Hampson,
2009) that resulted in the development of different
stratigraphic surfaces and systems tracts, and followed
the terminology defined by Hunt and Tucker (1992)
and Helland-Hansen and Gjelberg (1994). The pre-
sent work proposes a three-dimensional stratigraphic
framework for this Mesoproterozoic hydrocarbon play

and integrates the framework with the available chron-
ostratigraphic and chemostratigraphic data sets. The
sparse data set and poor age control mean that we
assume that the observed deepening and shallowing
trends are the consequence of relative sea level rise
and fall, and the paleoshoreline moved synchronously
across the basin. Based on these interpretations, it is
implied that the identified transgressions and normal
and forced regressions were synchronous. Indeed, in
this case study, we cannot identify with confidence
the coeval deposition of transgressive and normal or
forced-regressive systems tracts resulting from the spa-
tially different sediment supplies or local structural
movements.

RESULTS

From Cores to Well Logs

Sedimentary Facies and Environments
Based on the sedimentary facies identification criteria
(Figure 3), four main facies associations were iden-
tified from the core descriptions (E1–E4, Figure 4).
It is noted that the limited quantity of data meant
that it was not possible to consistently distinguish
between wave- and fluvial-dominated areas (sensu
Ainsworth et al., 2011). Therefore, we group delta-
front and foreshore environments in E1: fluvial-
influenced foreshore environments and shorefaces and
prodeltas in E2: fluvial-influenced shoreface environ-
ments. Two other environments are distinguished—
turbiditic (E3) and offshore transition to offshore (E4).
Here, we chose the wave domination over the fluvial
domination because of the lack of observed unidirec-
tional current structures and the abundance of wavy
and tangential bedded strata, which are interpreted
as the basin being wave dominated and fluvial
influenced.

The fluvial-influenced foreshore environments
(E1) are composed of planar-bedded, light gray to
beige, fine-grained sandstone and siltstone. They pre-
serve cross-bedding (Figure 3B), sometimes submas-
sive (Figure 3A), or slightly wavy bedded (Figure 3C).
They are often marked by an erosional base with
gravel lags (Figure 4). The planar- to cross-bedded
sandstones reflect deposition in shallow marine envir-
onments, either in foreshores or upper shorefaces
(Walker and Plint, 1992) or in reworked sand bars
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Figure 3. Sedimentary facies from cores intersecting the Velkerri-Kyalla interval. (A) Submassive sandstone; (B) cross-bedded sand-
stone; (C) wavy-bedded sandstone; (D) heterolithic sandstone and shale with syneresis cracks; (E) heterolithic sandstone and shale
with syneresis cracks and tangential bedding; (F) heterolithic wavy-bedded sandstone and shale with syneresis cracks and tangential bed-
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and shale; (J) heterolithic wavy-bedded sandstone and shale; (K) massive to planar-bedded shale.
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(Bhattacharya and Walker, 1992). The large number
of erosion surfaces and lags likely reflect storm or flu-
vial events on the margin.

The fluvial-influenced shoreface environments
(E2) are composed of wavy-bedded, light to dark
gray, heterolithic siltstone and shale. In this environ-
ment, fining-upward cycles (centimeters to meters

scale) preserving syneresis cracks (Figure 3D, E) and
tangential bedding (Figure 3E, F) are common
(Figure 4). The occurrence of fining-upward cycles,
wavy bedding, and heterolithic deposits are inter-
preted to be controlled by fair- and storm-weather
wave oscillatory currents (Dumas and Arnott, 2006;
Suter, 2006). Furthermore, variation in the river’s

G1
G2
G3
G4

Shallow-water deposits
Turbiditic deposits
Deep-water deposits
Organic rich deposits

0 500
GR (°API)
Tarlee S3

65.8 m

0 500
GR (°API)

Elliott 1

0 500
GR (°API)

Jamison 1

0 500
GR (°API)

McManus 1

0 500
GR (°API)

Shenandoah 1

0 500
GR (°API)
Walton 2

5.5 m

110.8 m

12
00

m
11

00
m

13
00

m

50
0m

40
0m

30
0m

60
0m

70
0m

80
0m

14
00

m
80

0m
70

0m

16
00

m

14
00

m
15

00
m

14
00

m
13

00
m

12
00

m
11

00
m

25
00

m

de
pt

h*
 (m

d,
 m

)
de

pt
h*

 (m
d,

 m
)

de
pt

h*
 (m

d,
 m

)

de
pt

h*
 (m

d,
 m

)
de

pt
h*

 (m
d,

 m
)

de
pt

h*
 (m

d,
 m

)

110.8 m Intusive rock
thickness removed

20
0 

m

Fluvial-influenced foreshore
Fluvial-influenced shoreface
Turbiditic environments
Offshore to offshore transition

E1
E2
E3
E4

Submassive sd.
Heterolithic st. and sh.
Planar-bedded heterolithic st. and sh.
Submassive sh.

c.u.

f.u.

Lag

Wavy-bedding
Planar-bedding

Cross-bedding
Tangential-bedding

Erosive surface

Slump

Fining upward

Coarsening upward

Syneresis cracks

Sedimentary figures:

Sedimentary environments: Gamma-ray facies:

Lithology:

100 km100 km100 km

Tarlee S3Tarlee S3 Walton 2Walton 2

McManus 1McManus 1

Jamison 1Jamison 1

Elliott 1Elliott 1

Tarlee S3 Walton 2

McManus 1

Jamison 1

Shenandoah 1Shenandoah 1Shenandoah 1

Elliott 1

Su
bm

as
s.

 S
h.

Pl
. S

h-
St

H
et

. S
h-

St
Su

bm
as

s.
 S

d.

Su
bm

as
s.

 S
h.

Pl
. S

h-
St

H
et

. S
h-

St
Su

bm
as

s.
 S

d.

Su
bm

as
s.

 S
h.

Pl
. S

h-
St

H
et

. S
h-

St
Su

bm
as

s.
 S

d.

Su
bm

as
s.

 S
h.

Pl
. S

h-
St

H
et

. S
h-

St
Su

bm
as

s.
 S

d.

Su
bm

as
s.

 S
h.

Pl
. S

h-
St

H
et

. S
h-

St
Su

bm
as

s.
 S

d.

Su
bm

as
s.

 S
h.

Pl
. S

h-
St

H
et

. S
h-

St
Su

bm
as

s.
 S

d.

c.u.

c.u.

f.u.

c.u.
c.u.

c.u.

c.u.
c.u.

c.u.

c.u.

c.u.

Figure 4. Synthetic facies description from studied drill cores. Identified facies reflect wave- to fluvial-dominated sedimentary environ-
ments. At the scale of the descriptions, and with the data available, no tide-dominated deposits were identified. GR5 gamma ray; Het.5
heterolithic; Pl.5 planar-bedded; Sd.5 sandstone; Sh.5 shale; St.5 siltstone; Submass.5 submassive.

CROMBEZ ET AL. 1909



flow regime likely affected the grain size of the sedi-
ments delivered to the basin, explaining the hetero-
lithic nature of this environment. Syneresis cracks are
interpreted to reflect the mixing of fresh and seawa-
ter (Plummer and Gostin, 1981), attesting to the
presence of rivers delivering fresh water to the
system.

The turbiditic environments (E3) are composed
of heterolithic planar-bedded, dark to light gray silt-
stone (Figure 3I). Fining- and coarsening-upward
trends can be present (Figure 3G), as can rare current
ripples (Figure 3H). These sediments are often sur-
rounded by planar-bedded, dark gray shale and fine-
grained siltstone with tangential bedding (Figure 4).
In this facies, the planar-bedded siltstones are inter-
preted to represent distal lobe deposits formed on
the shelf (Bouma, 1964; Walker, 1992). The fining-
upward trends in the siltstones, together with the
tangential bedding preserved in the shales surround-
ing the coarser interval, likely reflect the episodic
evolution of the system controlled by periods of a
higher flow regime in the river system feeding the
basin.

Offshore transition to offshore environments (E4)
are composed of planar-bedded to massive shale and
fine-grained siltstone (Figure 3K). Minor erosive
surfaces, tangential bedding, fining upward, and
wavy-bedded (Figure 3J) intervals are often present,
whereas syneresis cracks are rare. Here, the planar
bedding is attributed to hyperpycnal flows settling.
Rare tangential bedding is interpreted to reflect either
turbidite flows or storm-induced currents (Dumas
and Arnott, 2006). The occurrence of small reactiva-
tion surfaces or erosive surfaces are also interpreted to
be related to episodic storm activity or unidirectional
currents (Macquaker et al., 2010). The massive dark
gray to black facies is interpreted to represent the
deepest part of the sedimentary system and to reflect
mainly pelagic settling below the storm wave base
(Stow and Piper, 1984; Stow et al., 2001).

Overall, the Velkerri and Kyalla Formations and
Moroak Sandstone represent wave-dominated envir-
onments ranging from the foreshore and the upper
and lower shoreface to the offshore. In this wave-
dominated framework, the offshore transition reflects
environments between storm- and fair-weather wave
bases, whereas the shoreface-foreshore boundary is
placed at the base of the low tide level. Although
wave dominated, the occurrence of syneresis cracks

within the Moroak Sandstone and the Kyalla Forma-
tion indicate the mixing of freshwater and salt water
and therefore a fluvial influence. The interpretation
of a fluvial-influenced depositional environment is
further supported by the occurrence of gutters and
unidirectional currents (Wilson et al., 2021) that
confirm that sediments were deposited in a fluvial-
influenced environment, with sediment flowing to a
turbiditic system.

Sedimentary Environment and Well Log Facies
Using GR logs, we extend the interpretation of depo-
sitional environments to uncored wells intersecting
the Velkerri and Kyalla Formations and the Moroak
Sandstone. Although environmental reconstructions
based on well logs are less precise compared with
core logging, shoreline shifts can be reconstructed by
distinguishing four GR facies (G1–G4, Figure 4).
Shallow-water deposits (G1) often present low GR
values and either have a sharp base or are located
above decreasing GR trends. These low GR values
are interpreted to reflect the high abundance of
coarse-grained content in E1 environments. Sharp
bases are the result of sudden changes in the sedi-
mentary environment, whereas the gradual decrease
in GR values is coincident with a coarsening-upward
trend indicating shoreline progradation.

Turbidite deposits (G2) are marked by a blocky
GR pattern alternating from medium to high GR
values. This likely reflects shifts from silt-rich lobe
deposits to the mud-rich levee and overbank deposits
of E3. High GR values are typical for deep-water
deposits of GR facies G3 and present a high-frequency
variation that is likely linked to subtle lithologic
changes in the lower shoreface (E2) to offshore (E4)
deposits. Finally, the highest GR values occur in facies
G4 representing the organic-rich black shales (from
E4). In addition to the four GR facies, which represent
different depositional environments, GR trends can
be linked to transgressions and regressions. Although a
gradual increase in the GR values (more than tens of
meters) is interpreted to reflect a transgressive period,
a gradual decrease in the GR values (more than tens of
meters) is interpreted to reflect a regressive trend.

2-D Well Correlations

Our study is based on two well sections, oriented
east-west and north-south. The east-west well section
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spans 466 km and comprises 15 wells (Figure 5). It
extends from Broadmere 1 in the east to Sever 1 in
the west. The second well section spans 348 km and
also comprises 15 wells (Figure 6). It extends from
Prince of Wales 1 in the north to Elliott 1 in the
south. The top of the Moroak Sandstone is used as
a datum in both sections, assuming it represents
a pseudohorizontal surface. Because we aim to estab-
lish a quasi-chronostratigraphic framework, our cor-
relations may diverge from the lithostratigraphic
subdivision of this succession.

In the east-west section, unit 1 (equivalent to the
Kalala Member of the Velkerri Formation; Figure 5)
records significant deepening from the top of the
underlying Bessie Creek Sandstone. The sediments of
this unit were deposited mainly below the storm
wave base, interrupted by rare occurrences of shore-
face deposits. Unit 1 records two transgressive–
regressive (T-R) cycles. The top of the second cycle
was previously highlighted by Hoffman (2015) as
a continuous marker across the basin, being the only
carbonate-rich interval. Unit 2 is 150–250 m thick
(equivalent to the Amungee Member; Figure 5) and
records deep-water deposition below the storm
wave base, with minor to no shoreface influence and
rare turbidite deposits. This interval records three
significant peaks in the GR log, which often show a
Christmas tree–like pattern, indicative of there being
a high U concentration in the sediment-starved
intervals (Crombez et al., 2020). The three high GR
intervals match the definitions of the A, B, and C
organic-rich shale intervals (Munson and Revie,
2018). The uppermost cycle generally represents the
highest GR values and is inferred to record the high-
est concentration of fine material linked to the low-
est sedimentation rate. We interpret this interval to
represent the most distal part of the sedimentary sys-
tem. Unit 3 (300–500 m, equivalent to the Wywor-
rie Member; Figure 5) comprises offshore to lower
shoreface sedimentation. Siltstone beds are inter-
preted as thin, gravity flow deposits. Above these,
two T-R cycles are recorded, although the abun-
dance of turbidite deposits makes it more challeng-
ing to identify these cycles as clearly as those in unit
2. The thickness of the overlying unit 4 (Figure 5)
varies significantly across the basin. It appears to
reach almost 500 m in the east (where it is equiva-
lent to the Moroak Sandstone) but thins to approxi-
mately 100 m in the west. This interval is mainly

composed of shallow-water deposits in the east,
which gradually transition to deeper-water deposits
in the west. Two T-R cycles are recorded in unit 4. It
is important to note that the transgressive parts are
thinner compared to those in the underlying T-R
cycles. The overlying unit 5 (equivalent to lower
Kyalla, approximately 250 m; Figure 5) records a sig-
nificant deepening of the depositional environments
at its base, and at least one T-R cycle is apparent. It
comprises shoreface deposits in the east (equivalent
to the Elliott sandstone member) and turbidite
deposits in the west. Unit 6 is up to 550 m thick
and is truncated by a major erosional surface (Yang
et al., 2020b). It mostly comprises deposits formed
below the storm wave base, arranged in two T-R
cycles.

The north-south section records a facies distribu-
tion similar to that of the east-west section (Figure 6).
Unit 1 is intersected only in the north, where it
records deposition below the storm wave base, with
the rare occurrence of lower shoreface deposits.
Comparable to the east-west cross section (Figure 5),
two T-R cycles are developed in unit 1 and a
carbonate-rich interval occurs at the top of the second
cycle (Figure 6). Unit 2 also preserves the three T-R
cycles observed on the east-west transect. In the cen-
tral part of the basin (e.g., Kalala South 1), this unit
records three high GR intervals. The thickness of unit
2 is variable, measuring more than 600 m in the
south, and thinning to approximately 150 m in the
north. It is important to note that the second and
the third shale (B and C) merge in the northern
part of the basin between Borrowdale 2 and Lady
Penrhyn 1. Just as along the east-west section, unit 3
is characterized by the occurrence of turbidite depos-
its and two T-R cycles. Unit 4 records a facies shift
from shallow-water deposits in the south to deep-
water deposits in the north. The shallow-water de-
posits thin from 300 m in Elliott 1 to less than 50 m
inMcManus 1 (Figure 6). These observations are sim-
ilar to those made along the east-west transect, which
also demonstrates thinning and deepening from east
to west (Figure 5). Unit 5 again records significant
deepening across the study area; however, in contrast
to the east-west section, two T-R cycles are preserved
within this unit (Figure 6). The second cycle records
a facies distribution similar to the one observed
along the east-west transect, which we interpret
as the Elliott sandstone member of the Kyalla
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Formation. Unit 6 comprises mostly offshore to lower
shoreface deposits, arranged in two T-R cycles. This
unit reflects an overall deepening of the depositional
environment.

DISCUSSION

Stratigraphic Architecture

An understanding of the 2-D facies distribution along
two transects allows us to relate the observed facies
shifts to relative sea-level variations. This in turn
allows us to reconstruct the stratigraphic architecture
of the shale play. In the greater McArthur Basin,
regional unconformities interpreted to have formed
in response to major tectonic events bound the major
sedimentary groups (Rawlings, 1999). These uncon-
formities have previously been interpreted as first-
order sequence boundaries (SBs; Kunzmann et al.,
2020). In our case study, this means that the uncon-
formities at the base and top of the Roper Group rep-
resent such first-order SBs. Lower-rank sequences are
nested within this first-order sequence (Catuneanu,
2019b), and the identified sequences within the
Velkerri, Moroak, and Kyalla Formations represent
second and lower order sequences.

Second-Order Stratigraphic Evolution
Because the stratigraphic architecture results from
the complex interplay between sediment supply and
accommodation, not all systems’ tracts must be
developed and preserved in all locations across a sedi-
mentary basin (Catuneanu, 2006, 2019a). At the
scale of the study (300–500 km), the second-order
SBs will be expressed as unconformable contacts. In
the Beetaloo Sub-basin (i.e., 60,000 km2) the Bessie
Creek Sandstone is unconformably overlain by the
Velkerri Formation (Munson, 2016). The boundary
between the Moroak Sandstone and the Kyalla For-
mation is an unconformable surface in the east of the
basin that becomes conformable in the west of the
basin (Figure 5). The uppermost major unconformity
in this study is the boundary between the deep-water
facies of the Kyalla Formation and the shallow-
water/continental facies of the overlying Jamison
sandstone. This is the first-order SB developed at the
top of the Roper Group, which is developed as an
erosive surface from which several hundreds of

meters of stratigraphy have been removed (Yang
et al., 2020b). Considering the characteristics of
these three surfaces, the one at the top of the Bessie
Creek Sandstone is interpreted to be second order.
The unconformity at the top of the Roper Group,
being first order, will also bind a second-order
sequence (Figures 7, 8), and the second-order se-
quence contained within the studied interval should
include a major maximum flooding surface (MFS). In
the Velkerri and Kyalla Formations, several intervals
were deposited below the storm wave base; these
are characterized by high GR values and represent
potential MFSs. Among these deep-water deposits,
unit 2 (A, B, and C shales from the Amungee Mem-
ber) records a high organic content (Warren et al.,
1998; Munson and Revie, 2018; Jarrett et al.,
2019a). This could be attributed to organic matter
concentration in sediment-starved environments
being related to the increased distance from sediment
sources (Passey et al., 2010) occurring at the maxi-
mum backstep of the sedimentary system. In detail,
GR values are often higher in the C shale than in the
A and B shales, the result of lower dilution of authi-
genic U by detrital particles (Crombez et al., 2020).
This surface has a basin-wide extent, and we inter-
pret it as a second-order MFS (Figures 7, 8). The
underlying units 1 and 2 (Kalala and Amungee
Members, up to the C shale) represent a second-
order transgressive systems tract (TST), which is
followed by a second-order regression spanning the
interval from the C shale to the sub-Jamison uncon-
formity. At this order, no downstepping is observ-
able, indicating that the second-order regression
recorded in units 3–6 (Wyworrie Member, Moroak
Sandstone, and Kyalla Formation) is normal and
represents a second-order highstand systems tract
(HST). However, a second-order forced regression
should not be excluded and could be present below
the erosional surface at the base of the Jamison sand-
stone. In this second-order framework, the Jamison
sandstone is interpreted as a lowstand systems tract
(LST), being deposited in a continental (Gorter and
Grey, 2012), or shallow-water setting (Munson,
2016), after a relative sea-level drop that resulted in
the erosion of the top of the Kyalla Formation. In the
studied interval, besides the Jamison sandstone, no
LST is identified in any other order. In this case
study, second-order SBs are expressed as a shift from
“shallow-water” regressive deposits to “deep-water”
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transgressive units, and the SBs are stacked with the
transgressive surfaces (TSs).

Third-Order Stratigraphic Evolution
Within the second-order sequences, a higher fre-
quency of cyclicity is observed in the Velkerri and
Kyalla Formations and the Moroak Sandstone.
Nested third-order sequences are bound by third-
order SBs, as well as first- and second-order SBs
already identified. Although second-order cyclicity
implies basin-wide shoreline shifts, third-order SBs in
the Beetaloo record shifts of a few tens of kilometers.
This means that the third-order SBs are expected
to gradually change expression across the basin. A
potential third-order SB is the surface at the top of
unit 1 (below the A shale). It represents a facies shift
from strata deposited above the storm wave base to
deep-water facies. Although this surface does not
show evidence of erosion, its significant lateral extent
(hundreds of kilometers) makes it a potential third-
order SB. Higher in the stratigraphy, the surface at
the transition between units 4 and 5 (approximately
at the boundary between the Moroak Sandstone and
the lower Kyalla Formation) reflects a significant ver-
tical facies change and is potentially erosive in the
southern and eastern parts of the study area. In addi-
tion, the surface at the top of unit 5 (Elliott sandstone
member; Figures 5, 6) is likely unconformable in the
south and east but transitions into a conformable sur-
face toward the north and west. Because this surface
also records an abrupt facies change in most parts of
the basin, it is interpreted as a third-order SB. In sum-
mary, three third-order SBs were identified in the
studied interval, in addition to the first- and second-
order SBs previously identified bracketing four third-
order sequences.

The oldest third-order sequence comprises two
T-R cycles. Of these two cycles, the first often
records a surface with the highest GR values within
this sequence and is considered to be the corre-
sponding first third-order MFS. No other sequence
stratigraphic surface is identifiable in the available
data set for this sequence; therefore, we divide this
third-order sequence into an HST overlying a TST.

The second third-order sequence contains the
second-order MFS that is also interpreted as a third-
order sequence MFS. In the upper part of the
sequence, the shallow-water deposits that constitute
unit 4 (Moroak Sandstone) can be interpreted as being

either a highstand normal regressive or a forced-
regressive interval. In the case of a highstand normal
regression, the rising relative sea level would generate
accommodation on the margin of the basin, which
would likely be filled by backshore and continental
deposits. Neither our study nor previous work on
the Moroak Sandstone (Powell et al., 1987; Munson,
2016) report such sedimentary environments, with
the shallowest parts of unit 4 (Moroak Sandstone)
being described as tidal flat deposits. The absence of
continental deposits in the known extent of the Mor-
oak Sandstone suggests that accommodation was not
created at the basin margin. These observations are
more compatible with a forced regression and down-
stepping of the shoreline (Catuneanu, 2006). A basal
surface of forced regression is therefore interpreted at
the base of unit 4 (Moroak Sandstone). It separates
an HST present in unit 3 (above the C shale) and a
falling stage systems tract present in unit 4 (Moroak
Sandstone) from the top of the second third-order
sequence (Figures 7, 8). Although the observed sedi-
mentary environments are compatible with a forced
regression, the absence of a significant erosion surface
to the east and south of the basin suggests that the rel-
ative sea-level fall was of limited amplitude.

Above unit 4, the third sequence records two
T-R trends. The second one appears poorly preserved
along the eastern part of the basin (Figure 5). In this
sequence, the deepest sedimentary environments
are observed tens of meters above the base of the
sequence and are interpreted as MFSs. Toward the
south and east of the basin, the top of the sequence
comprises shallow-water deposits that progressively
transition into gravity flow deposits toward the west
(equivalent to the Elliott sandstone member). In
detail, the GR log often records a sharp drop, which
reflects a sudden basinward shift of the shoreline
(Catuneanu, 2019a). This is likely accompanied
by the truncation of the underlying strata, which
explains the poor preservation of the second T-R
cycle in the eastern part of the basin (Figure 5). We
interpret this sudden facies shift as forced regression,
with its basal surface placed at the GR drop in the
east and south and beneath the gravity flow deposits
in the west. Alternatively, the unit 4 interval may
be either a highstand or lowstand normal regression.
However, this would imply that during the deposi-
tion of the sand-rich interval the relative sea level
was slowly rising, favoring the accumulation of
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continental deposits on the edges of the basin. Since
only marine facies were identified in the Elliott sand-
stone member, the highstand or lowstand normal
regression interpretations seem unlikely.

The uppermost third-order sequence recorded
in the studied interval is truncated by the first-order
sub-Jamison SB. This sequence comprises two well-
developed T-R cycles across the basin. In the southern
and eastern parts of the basin, multiple prograding
deposits occur that are difficult to identify in other
parts of the basin. In the west, the GR log shows pro-
gressively increasing values, which we interpret as a
fining-upward trend. Identifying an MFS is more
challenging here than in the underlying third-order
sequences. Because of the occurrence of multiple
coarse-grained, prograding deposits in the upper part
of this sequence, we interpret the MFS to be located
at the top of the first deepening cycle. In this sequence
only two systems’ tracts are identifiable—a TST and
an HST.

In the third order, similarities exist with the strat-
igraphic architecture suggested by Abbott and Sweet
(2000). Our basal SB (SB1) and the SB3 correspond
to the base and top, respectively, of their “Veloak”
sequence, whereas the SB3 and the topmost SB5,
respectively, correspond to the base and top of their
“Shermi” sequence. By adding more wells intersect-
ing the Velkerri-Kyalla interval, we have been able to
refine previous work on the stratigraphy of these for-
mations and identify additional sequences previously
not identified.

Fourth-Order Stratigraphic Evolution
The available facies and GR data permit the identifica-
tion of high-frequency cyclicity nested within the
third-order sequences of the Velkerri and Kyalla
Formations and Moroak Sandstone. These cycles are
between 100 m (in the west and north) and 250 m
thick (in the south and east), and we interpret them
as fourth-order sequences (Catuneanu, 2019b).
Although identifiable, the available data do not allow
the identification of stacking patterns necessary to
divide the regressive part into lowstand, highstand,
and forced-regressive deposits (sensu Hunt and
Tucker, 1992 and Helland-Hansen and Gjelberg,
1994). Therefore, we use the framework proposed by
Johnson and Murphy (1984), only distinguishing two
surfaces: maximum regressive surfaces and MFSs.
These surfaces are used to distinguish regressive

systems tracts and TSTs. Twelve fourth-order se-
quences can be identified from our data set. In addi-
tion, a thick interval of turbidite deposits, most likely
representing another fourth-order regressive event,
suggest that a 13th T-R cycle may have occurred in
unit 3 (Kalala Member). The identification of T-R
cycles is in contrast to the recent findings by Cox et al.
(2022), who suggested that organic matter enrichment
was not related to MFS but solely to redox-controlled
processes and primary productivity variations.

Chronostratigraphic Framework

Previous work on the Velkerri and Kyalla Formations
and Moroak Sandstone provided several different age
constraints for these units (Abbott et al., 2001; Ken-
dall et al., 2009; Yang et al., 2018, 2019). Recently,
Yang et al. (2018) suggested that the Velkerri For-
mation and the Moroak Sandstone were deposited
between 1349 and 1320 Ma, whereas the Kyalla For-
mation must be younger than 1313 – 47 Ma and
older than the maximum depositional age of 959 –
18 Ma of the overlying Jamison sandstone. Integrat-
ing these available age constraints into our sequence
stratigraphic framework allows us to better under-
stand the age and duration of the studied stratigraphic
interval. Without integration, the available ages sug-
gest high sedimentation rates for the Velkerri-Moroak
interval; for example, 110 m�m.y.�1 for Tanumbirini
1 and 90 m�m.y.�1 for Amungee NW 1 (assuming
the uncompacted thickness to have been 1.8 times
higher than the current thickness; Fowler and Yang,
1998). Organic-rich rocks generally form under low
sedimentation rates (<50 m�m.y.�1; Tyson, 2001).
The sedimentation rates in the Velkerri-Moroak
interval are difficult to determine. On the one hand,
given that the primary productivity in the Proterozoic
was generally low (Crockford et al., 2018), the sedi-
mentation rates in the Velkerri-Moroak interval could
have been less than 50 m�m.y.�1. On the other hand,
they may have been close to modern values, consider-
ing that individual Proterozoic basins are reported
to have had higher organic matter burial rates
(Hodgskiss et al., 2020).

By including the detrital zircon geochronology
data from previous studies (Yang et al., 2018, 2019;
Appendix Table 3 [supplementary material available
as AAPGDatashare 171 at www.aapg.org/datashare])
into our stratigraphic architecture, we were able
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to construct a chronostratigraphic framework. We
selected samples with a concordance of ‡95%
between 206Pb/207Pb and 206Pb/238U ages. As
recommended by Copeland (2020), we consider
only the youngest zircon age to represent the maxi-
mum depositional age.

Of the 20 reported samples, only 5 present a
maximum depositional age younger than the under-
lying strata. As shown in Figure 9, using Re-Os ages,
only three samples are considered to provide signifi-
cant insights into the depositional ages of the Velkerri
and Kyalla Formations and the Moroak Sandstone.
A zircon was analyzed from the Jamison sandstone
that yielded a maximum depositional age of 1142 –
47 Ma. This indicates that the underlying Kyalla
Formation was likely deposited before ca. 1170 Ma.
At the top of the Wyworrie Member, a zircon yield-
ing a maximum depositional age of 1298 – 47 Ma
suggests that the transition from the Velkerri For-
mation to the Moroak Sandstone occurred at ca.
1300 Ma. Finally, a zircon from the Bessie Creek
Sandstone yielded a maximum depositional age of
1409 – 42 Ma, implying that the base of the Velkerri
Formation is not older than ca. 1420 Ma. In addition
to the selected detrital zircons, available Re-Os con-
straints from Kendall et al. (2009) collected from
well Urapunga-4 to the north of the Beetaloo Sub-
basin provide a Re-Os age of 1417 – 29 Ma at the
base of the Velkerri Formation, which is compatible
with the interpreted depositional age of ca. 1420 Ma
for the base of this interval. Another Re-Os age indi-
cates an age of 1361 – 21 Ma for the uppermost
organic-rich interval of the Velkerri Formation. This
is compatible with a maximum depositional age of
1300Ma for the top of the Velkerri Formation.

Previous work often refers to a U-Pb intrusive
age to constrain the minimum depositional age for
the Velkerri and Kyalla Formations. However, these
ages are not used in the present study because they
are derived from outcropping units, with poor con-
straints on their stratigraphic position, to the north of
the study area (Abbott et al., 2001), or intrusive
rocks located in the underlying strata (Bodorkos et al.,
2020). Thus, they do not provide direct calibration
of the depositional age of the units in the subsurface
of the Beetaloo.

The geochronological framework indicates that
the Velkerri Formation was deposited over approxi-
mately 120 m.y. This suggests an average duration of

approximately 15 m.y. for each of the eight fourth-
order T-R cycles. Assuming a similar duration for the
cycles in the Moroak Sandstone and the Kyalla Forma-
tion gives an age of ca. 1270 Ma for the boundary
between the Moroak Sandstone and Kyalla Forma-
tion, and an age of ca. 1210 Ma for the top of the
Kyalla Formation. Using the presented chronostrati-
graphic framework, sedimentation rates computed for
both the Velkerri Formation and Moroak Sandstone,
respectively, are 21.26 m�m.y.�1 for Tanumbirini 1
and 17.4 m�m.y.�1 for Amungee NW 1. These sedi-
mentation rates are consistent with values expected
for Proterozoic organic-rich shales (<50 m�m.y.�1).
They are also within the same order of magnitude as a
recent estimate of 40 m�m.y.�1 (postcompaction) for
the Velkerri Formation based on Milankovitch cyclic-
ity studies (Mitchell et al., 2020).

Our chronostratigraphic framework allows us to
calculate the duration of sequences of different hier-
archical ranks, assuming that the T-R cycles have a
constant cyclicity. The second-order sequence repre-
sents a duration of at least 210 m.y., assuming 300 m
of sediment were eroded at the top of the Kyalla For-
mation (Faiz et al., 2021), which represents approxi-
mately two T-R cycles. It places the end of the Kyalla
deposition at ca. 1180 Ma. This is compatible with
the youngest zircons analyzed in the lower Jamison
sandstone (Figure 9). The third-order sequences span
on average 52.5 m.y., with the second sequence
recording the longest duration (105m.y.) and the first
sequence recording the shortest duration (30 m.y.).
In summary, the fourth-order sequences in the stud-
ied stratigraphic interval are approximately 15 m.y.
long, the third-order sequences are between 50 and
100 m.y. long, and the second-order sequences are at
least 200 m.y. long. These sequence durations are sys-
tematically longer than the average ranges presented
in a recent study on the cyclicity of the sedimentary
records globally (300 yr–0.1 m.y. for fourth order,
10,000 yr–3 m.y. for third order, and 0.5–30 m.y. for
second order; Catuneanu, 2019b). Since the data
presented in Catuneanu (2019b) stem largely from
Phanerozoic basins, this may indicate different con-
trols on sequence formation in the mid-Proterozoic.

Erosion rates are controlled mainly by the uplift
rates that control the slope (Schaller et al., 2001;
Montgomery and Brandon, 2002) and the climate that
will drive the expression of chemical and mechanical
erosion processes (Summerfield and Hulton, 1994;
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Molnar, 2004; Jiongxin, 2005). At the time of deposi-
tion of the studied interval, the atmosphere and the
biosphere were significantly different from those of
the present day (Lyons et al., 2014), which suggests a
different, poorly quantified control of climate on ero-
sion rates. Present-day estimations of erosion rates
show values of up to 10 mm�yr�1 (10,000 m�m.y.�1)
and suggest a strong relationship between topography
(Montgomery and Brandon, 2002) and the uplift rates
(Cyr et al., 2010). In the Proterozoic, the topography
around the basin was probably low because the closest
mountain ranges were 250 km south of the basin
(Yang et al., 2020a). Because of this low topography
and the absence of land plants, we interpret the ero-
sion rate to be in the lower part of the present-day
range—less than 0.10 mm�yr�1 (100 m�m.y.�1). This
suggests that the erosion at the top of the Kyalla For-
mation took place in a few million years, which agrees
with the maximum depositional age determined from
zircons found in samples from the lower Jamison
sandstone.

Controls on Stratigraphic Evolution and
Regional Implications

Sediment Sources and Links to Chemostratigraphy
The reconstructed facies distribution and strati-
graphic architecture provide important information
on the directions from which sediments were sup-
plied. All of the units thin toward the north and
west. In addition, shallow-water deposits are the pre-
dominant facies in the wells that intersect the south-
ern and eastern parts of the Moroak Sandstone (e.g.,
Elliott 1, Tanumbirini 1) and pinch out toward the
north and west (e.g., Tarlee S3). In the Elliott sand-
stone member of the Kyalla Formation, turbidite
deposits occur in the western part of the basin and
are interpreted to be temporally equivalent to the
shallow-water deposits in the east (e.g., Tanumbirini
1). These observations indicate that the proximal
part of the sedimentary system was located in the
southeast and that the basin deepened to the north-
west. Furthermore, no significant changes in sedi-
ment supply direction occurred during the deposition
of the Velkerri to Kyalla Formations. This contrasts
with the interpretation of Yang et al. (2020b), who
suggested that sediments were partly delivered from
the north.

Further constraints on sediment sources are pro-
vided by comparing the chemostratigraphic frame-
work from Munday and Forbes (2020) with our
stratigraphic architecture (Figure 10). A total of five
chemosequences (S0–S4) were distinguished and
have been further subdivided into chemopackages
based on the variability of elemental composition.
The relative elemental abundance is interpreted to
reflect variations in sediment provenance and depo-
sitional processes, as well as the environment of
deposition and diagenetic alteration.

In the Velkerri Formation, the transition from
the first to the second third-order sequence coincides
with the transition from the first to the second
chemosequence, which is interpreted as a distinct
change in sediment provenance. The first sequence is
characterized by relatively high Zr content, most
likely caused by increased zircon abundance. The
second sequence has more mafic characteristics, indi-
cated by an increase in element ratios such as Ti:Nb
and Ti:Th and is, in addition, enriched in P (Cox
et al., 2016; Munday and Forbes, 2020). A potential
source was located in the Mount Isa region (Yang
et al., 2018). The second shift in geochemical com-
position is recorded above the C shale (Figure 10).
This shift reflects a return to a more felsic source
(Munday and Forbes, 2020) located to the east of
the basin (Yang et al., 2019). The transition from
the Amungee to the Wyworrie Member is character-
ized by a shift from relatively high Na concentrations
to high K concentrations, reflecting a switch from
plagioclase-dominant feldspars to potassium-rich
feldspars, as well as a significant and sustained
increases in Zr concentration. Here, the return to a
more felsic source coincides with the end of the
deposition of organic-rich units. Changes in elemen-
tal composition at the base of the Moroak Sandstone
(S2–S3) are thought to represent a change in facies,
from prodelta to delta front, rather than a change in
sediment provenance. It is interpreted to be related
to the occurrence of a third-order forced regression.
The shift from chemosequence 3 to 4 is commonly
marked by the occurrence of ironstone (Sherwin
Member) on top of the Moroak Sandstone displaying
Fe-rich lithologies. The overlying Kyalla Formation is
characterized by its high Rb:Al ratio and coincides
with a shift in detrital zircon provenance (Yang et al.,
2019). The detrital zircon data were interpreted
as indicative of a provenance shift from the east
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(e.g., Mount Isa region) to the south (e.g., Arunta
region; Yang et al., 2019). However, detailed che-
mostratigraphic analyses highlighted numerous simi-
larities between chemosequences 2 and 4 (Munday
and Forbes, 2020), suggesting that this shift reflects a
change in the depositional environments but main-
tains similar source compositions. Furthermore, the
single chemosequence identified in the Kyalla Forma-
tion is consistent with the absence of a northern
source region that would likely have had a different
geochemical signature.

Chemopackage and chemosequence boundaries
often coincide with surfaces of sequences of strati-
graphic significance. This suggests that, at the scale of
the study, the factors that controlled the sequence
stratigraphic architecture also affected the chemostra-
tigraphy. The good correlation between the inter-
preted sequence stratigraphy and chemostratigraphy
in the basin corroborates that both data sets are
complementary. Chemostratigraphic data are very
powerful for reinforcing sequence stratigraphic inter-
pretations in areas and intervals of lower confidence.

Structural Framework and Relative Sea-Level Variations
At present, the DalyWaters high (Figure 1) splits the
subbasin into two depocenters (eastern and western)
and was previously interpreted as a topographic high
during the Proterozoic (Yang et al., 2020a). Strati-
graphic observations from wells on either side of this
structure (e.g., Tarlee S3, McManus 1) do not indi-
cate significant thickness or facies variations during
the deposition of units 2–6 (the Amungee and
Wyworrie Members of the Velkerri Formation and
the Moroak Sandstone and Kyalla Formation). This
suggests that the Daly Waters high did not affect
sediment dispersal and depositional environments at
the time of deposition and only became a prominent
structural feature in the basin after the deposition of
the studied interval. However, this does not imply
that there were earlier or later structural reorganiza-
tions along the Daly Waters high in the basin. A
significant thickness variation between the Tarlee 1
and Birdum Creek 1 wells suggests that there was a
local bathymetric high within the eastern depocen-
ter during the deposition of the A, B, and C shales.
Although the available data are not sufficient to
accurately locate all of the small structural features,
the thinning of unit 2 (equivalent to the Amungee
Member) in Tarlee 1 suggests that local structural

movements may have occurred within the two
depocenters. Similar observations can be made in the
northern part of the basin, where stratigraphic corre-
lations, supported by chemostratigraphy (Munday
and Forbes, 2020), indicate the stratigraphic pinch-
out of the interval usually separating the B and C
shales. The B and C shale intervals are juxtaposed
in this area, which suggests the occurrence of a
topographic high in the northern part of the basin.
Considering its location, we refer to this topographic
feature as the Urapunga arch. Although active
between the deposition of the B and C shales, it
probably existed before the deposition of the A shale
and remained present until after the deposition of
the C shale. The location of this structural high may
be important for the accumulation of organic-rich
strata in the Velkerri Formation. Although recent
work has emphasized the role of primary productiv-
ity over basin restriction (Cox et al., 2019), this
topographic high occurs over an area where it could
have separated the Beetaloo Sub-basin from the
ocean between Laurentia and the NAC. Therefore,
the Urapunga arch may have restricted the water
renewal of the basin, favoring the development of
anoxic environments. This structural high may have
hampered the nutrient supply by upwelling, imply-
ing that another driver for the increased productivity
observed in the A–C shales is required. This high-
lights the importance of rivers to deliver the nutrients
sourced from the mafic rocks located to the south of
the basin (Yang et al., 2019).

In the Velkerri and Kyalla Formations and the
Moroak Sandstone, the fourth-order T-R cycles
(Figure 11C) present a regular periodicity. This
rhythmicity suggests that these were likely con-
trolled by eustatic variation. The interpretation of
medium-term eustatic variations in this Mesoproter-
ozoic interval aligns with the results from Mitchell
et al. (2020), who highlighted short-term eustatic
variations in the lower part of the studied interval.

Unlike the fourth-order cycles, the third-order
sequences have different periods (from 30 to
105 m.y.), which may suggest that they were con-
trolled by irregular, regional, structural processes.
Within the Velkerri and Kyalla Formations and the
Moroak Sandstone, four intervals are interpreted
as third-order transgressions (Figure 11A) related
to rapid relative sea-level rise events. They show a
sudden deepening of the sedimentary environment,

CROMBEZ ET AL. 1923



with three recording a shift from subaerial uncon-
formities to deep-water deposits (the bases of
the Velkerri, the lower Kyalla, and the upper Kyalla
Formations; Figure 11B). We interpret the pace and
amplitude of these changes to reflect rapid, structur-
ally controlled subsidence (Figure 11C). In addition
to the third-order transgressions, four regressive
intervals are recorded within the studied interval

(Figure 11A). Here, the regressive parts of sequences
1 and 4 only record highstand deposition, whereas
sequences 2 and 3 record both highstand deposition
and forced regression. We interpret third-order
HSTs to have been deposited during phases of
regional subsidence when sediment supply exceeded
accommodation, and FSSTs to reflect large-scale
basin uplift (Figure 11C).
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When placed into a broader geodynamic context,
the Velkerri and Kyalla Formations and the Moroak
Sandstone are interpreted to have been deposited
during the closing of the Mirning ocean, separating
the West Australian craton and the NAC, and asso-
ciated with subduction-related magmatism and orog-
eny located a couple of hundred kilometers to the
south of the Beetaloo Sub-basin (Yang et al., 2019).
The different basin-scale, uplift, and subsidence
phases observed in the Beetaloo Sub-basin can there-
fore likely be tied to the motions of the different
cratons located around the basin. Indeed, craton
accretions and variations in subduction speed will
affect the stress regime and control the vertical
motion of the area (Rohais et al., 2018). Two phases
of uplift are recorded during the deposition of the
Moroak Sandstone (ca. 1270 Ma) and the Elliott
sandstone member of the Kyalla Formation (ca.
1245 Ma) and precede the development of a major
unconformity at the base of the Jamison sandstone
(ca. 1170Ma). The interpreted ages for each of these
uplifts and resulting erosion events match the ages
proposed by Smits et al. (2014) for the accretion of
the West, North, and South Australian cratons.
They showed that cratons did not accrete before
1200 Ma, which suggests that the uplift event
recorded by the sub-Jamison unconformity hap-
pened after the deposition of the Kyalla Formation
and may record the cratons’ accretions. This obser-
vation could also indicate that the uplift events
present in the studied interval are related to the vari-
ation of the subduction velocity toward the south-
southwestern edge of the NAC.

Paleogeographic Evolution
The top of the Bessie Creek Sandstone is marked by
a TS of erosion likely replacing a subaerial unconfor-
mity that separates shallow-water facies below from
the deep-water facies of unit 1 (Kalala Member;
Figure 12A). On maps in Figure 12, the location of
the highland is derived mainly from the location of
the potential sedimentary sources suggested by Yang
et al. (2018). We interpret the majority of the basin
to have been mostly continental at the top of the Bes-
sie Creek Sandstone (Figure 12A; this continental
top has been eroded by the basal Velkerri transgres-
sion), transitioning into shallow marine and eventu-
ally offshore facies to the north of the study area.
These deeper-water deposits are postulated to reflect

the transition into an open ocean that lies farther to
the north (Yang et al., 2018). The strata overlying
this surface are interpreted to record a transgression
during the deposition of units 1 and 2 (the Kalala and
Amungee Members; Figure 12B), in which the A, B,
and C shales reflect intervals of maximum shoreline
backstepping. At the end of the transgression, the
shoreline is interpreted to have shifted significantly
toward the south, close to the Tennant Creek and
Arunta provinces.

Constraints determined from detrital zircons
(Yang et al., 2019) and chemostratigraphy show that
this transgression was not associated with a shift in
provenance (Figure 11D). Following this transgres-
sion, a turbidite system with deposition toward the
northwest was established, most likely confined by
the Urapunga arch to the north (Figure 12C). The
next significant step in the evolution of the basin
was the northwestward progradation of the shallow
marine facies of the Moroak Sandstone (Figure 12D).
The base of the turbiditic interval and the base of the
Moroak Sandstone are marked by a change in chemo-
sequence (Figure 11D) (Munday and Forbes, 2020).
This change is not synchronous with the structural
reorganization observed in the extent of the basin.
However, the sudden occurrence of gravity flow
deposits suggests the reorganization of continental
drainage systems far outside the study area; these
are interpreted to be related to the closure of the
Mirning ocean.

The base of the Kyalla Formation is marked by
another second-order transgression (Figure 12E).
However, we interpret this to have been associated
with a less significant shoreline backstepping than the
second-order transgression that led to the deposition
of the A, B, and C shales of the Amungee Member.
Indeed, core descriptions (Figure 4) show shallower
facies in the lower Kyalla Formation, and chemostra-
tigraphic analyses highlight similarities between che-
mosequences 2 and 4, which can be interpreted
as derived from the same sedimentary environments
(Figure 11D; Munday and Forbes, 2020). The
organic content in the lower Kyalla Formation
is moderately high, suggesting that the Urapunga
arch still existed during the deposition of this interval.
The Urapunga arch would have provided ideal
conditions for the development of a silled basin en-
abling organic matter to accumulate. Overlying the
lower Kyalla Formation, the Elliot Member reflects
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regression, with shallow-water deposits prograding
from the southeast toward the northwest, progres-
sively transitioning into gravity flow deposits (Figure
12F). The accumulation of turbidite deposits on the
shelf suggests that the Urapunga arch was still pre-
sent, preventing gravity flows from transiting into

open ocean settings. The overlying strata, up to the
sub-Jamison unconformity, record a transgression
with the second-largest backstep of the shoreline ob-
served in this study (Figure 12G). We postulate the
shoreline to have shifted almost as far south as during
the deposition of the C shale.
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Figure 12. Schematic paleogeographic evolution during the deposition of the Velkerri and Kyalla Formations and the Moroak Sand-
stone: (A) sequence boundary (SB)-1, (B) maximum flooding surface (MFS)-2, (C) lower highstand systems tract (HST)-2, (D) SB-3,
(E) MFS-3, (F) SB-4, (G) MFS-4. The dotted lines separating the different sedimentary environments reflect the uncertainties of these inter-
pretations. It is important to note that the facies distribution outside the wells’ vicinity is speculative and based on previous works on
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CONCLUSION

A detailed understanding of the stratigraphic architec-
ture and facies heterogeneities in shale plays is impor-
tant for reducing the risks and costs associated with
exploration. Based on core descriptions, GR interpre-
tations, and well correlations, this study reconstructed
the stratigraphic evolution of the Mesoproterozoic
Velkerri-Kyalla Formation interval in the Beetaloo
Sub-basin. This study shows the following.

1. The studied interval is composed mostly of sedi-
mentary rocks that were deposited in wave-
dominated, fluvial-influenced marine environments
ranging from foreshore to offshore, including
gravity flow deposits and delta front facies.

2. Four main GR facies can be distinguished by
upscaling core descriptions into GR log signatures.
These include shallow-water deposits, shoreface to
offshore deposits, turbidite deposits, and organic-
rich deposits.

3. The studied interval is composed of one second-
order depositional sequence, four third-order
depositional sequences, and 13 fourth-order
T-R cycles.

4. Stratigraphic sequences and chemosequences
are linked in the Beetaloo Sub-basin. These ap-
proaches appear to be complementary, and all
of the chemosequence changes occur across
the surfaces of sequences of stratigraphic
significance.

5. Sediments in the Beetaloo Sub-basin were likely
supplied from the southeast during the deposi-
tion of the Velkerri and Kyalla Formations and
the Moroak Sandstone.

6. Integrating previously published geochronology
with our stratigraphic architecture produces find-
ings that suggest that the Velkerri Formation was
likely deposited between 1420 and 1300 Ma, the
Moroak Sandstone between 1300 and 1270 Ma,
and the Kyalla Formation between 1270 and
1210 Ma.

7. The Daly Waters high, presently the main struc-
tural feature in the Beetaloo Sub-basin, did not
affect the sediment dispersal during the deposi-
tion of the Velkerri-Kyalla interval.

8. Small structural highs likely existed in the Bee-
taloo Sub-basin. For instance, a high that we
have named the Urupunga arch existed in the

northern part of the basin. It may have acted as
a sill, limiting the water exchange between the
basin and the open ocean.

9. The studied stratigraphic interval records three
phases of uplift. They are interpreted to be
related to the continental geodynamic evolution
of the area and reflect the progressive closure of
the Mirning ocean located to the south of the
Beetaloo Sub-basin.

This work can be used as a foundation for detailed
studies focusing on the paleoenvironmental, mineral-
ogical, petrophysical, and mechanical variations in
the Beetaloo Sub-basin. Moreover, by identifying the
controls on the basin’s stratigraphic architecture, the
findings of this study enable predictive models to be
built. These models can be used to predict the distri-
bution of sedimentary heterogeneities likely to gener-
ate hydrocarbons and provide favorable conditions for
hydraulic stimulation.
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