About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

Environmental Geosciences (DEG)

Abstract

Environmental Geosciences, V. 11, No. 4 (December 2004), P. 221-238.

Copyright copy2004. The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.

DOI: 10.1306/e.g.06250404017

Controlling steam flood migration using air injection wells

R. A. Hodges,1 R. Falta,2 L. Stewart3

1P.O. Box 7093, Golden, Colorado, 80403; [email protected]
2340 Brackett Hall, Clemson, South Carolina 29634-0919
31440 Rollins Road, Burlingame, California 94010

AUTHORS

Rex A. Hodges is nearing completion of a Ph.D. in environmental engineering and science from Clemson University and has an M.S. degree in geology from the University of North Carolina. He worked for 10 years as a geologist at Chevron and 10 years as a research associate at Clemson. He currently works for Integrated Hydro Systems in Golden, Colorado.

Ron Falta is professor of geology and environmental engineering at Clemson University. He received B.S. and M.S. degrees in civil engineering from Auburn University and a Ph.D. in mineral engineering from the University of California, Berkeley. His primary research interests are in subsurface contaminant transport and remediation.

Lloyd Stewart is vice president of Praxis Environmental Technologies, Inc. He has 18 years of experience in environmental, research and development process design, and modeling of fluid and heat flow. He received his Ph.D. from University of California Berkeley, his M.S. degree from Georgia Tech, and his B.S. degree from North Carolina State University, all mechanical engineering. He is a registered professional engineer in California.

ACKNOWLEDGMENTS

The authors acknowledge the Westinghouse Savannah River Company for partial funding of the research and the environmental professionals at the Savannah River Site for providing data and advice during the study.

ABSTRACT

Plumes of contamination emanate from nonaqueous-phase liquid sources as its constituents slowly dissolve into passing groundwater. For a large, well-characterized source, an aggressive technology such as steam flooding can accelerate cleanup. Steam is injected through a series of wells within and around a source area, and the steam zone grows radially around each injection well. The steam front drives the contamination to a system of groundwater pumping wells in the saturated zone and soil vapor extraction wells in the vadose zone. The movement of steam in the subsurface is governed primarily by soil heterogeneity and gravity. Steam is buoyant in groundwater and tends to migrate upward unless injected below a continuous confining layer. Groundwater pumping rates and vacuums typical of steam flooding are generally low compared to the steam injection rate and pressure and have limited influence over the lateral growth of the steam zone. To overcome these limitations, a system of air injection wells can be used to direct the steam zone growth. This paper presents results of sand-box experiments using air injection to prevent the outward growth of a steam zone between extraction wells with a discontinuous confining layer limiting the upward migration of steam. These experiments were numerically modeled with the multiphase nonisothermal code T2VOC. When confined vertically, the experiments and modeling show that outward migration of the steam front can be effectively controlled by placing air injection wells opposite steam injection wells. This technique can direct steam zone growth toward difficult access sources and away from areas where steam is not desired. Control of a proposed full-scale steam flood of the M-Area settling basin at the Savannah River Site was modeled using this method and the results are presented in this paper.

Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Watermarked PDF Document: $14
Open PDF Document: $24