About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

Environmental Geosciences (DEG)

Abstract

Environmental Geosciences, V. 12, No. 3 (September 2005), P. 177-192.

Copyright copy2005. The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.

DOI:10.1306/eg.04260404004

Age significance of nC17/Pr ratios in forensic investigations of refined product and crude oil releases

Richard W. Hurst,1 Gene W. Schmidt2

1Hurst amp Associates, Inc., 9 Faculty Court, Thousand Oaks, California 91360; [email protected]
2Gene W. Schmidt Environmental Consulting, 11619 S. Hudson Place, Tulsa, Oklahoma 74137; [email protected]

AUTHORS

Richard W. Hurst received his doctorate in geology and geochemistry from the University of California, Los Angeles in 1975. He is a professor of geological sciences and geochemistry at California State University, Los Angeles. Since 1978, his interests have focused on performing research and consulting in the field of forensic environmental geochemistry, applying isotope geochemistry, hydrogeologic data, and statistical methods to resolve problems asssociated with environmental remediation and petroleum exploration.

Gene W. Schmidt retired as director of Groundwater Management Services in Amoco Corporation's Environment, Health, and Safety Department in 1992. He currently operates an enviromental consulting firm that specializes in the forensics of petroleum hydrocarbon contamination. He holds two undergraduate degrees (geology and analytical chemistry) and two graduate degrees (organic and aqueous geochemistry and geochemistry). Prior to heading the formation water progam at Amoco, he conducted groundwater pollution control work for the Kansas State Board of Health. He is a certified groundwater professional in the Association of Groundwater Scientists and Engineers, a professional hydrogeologist in the American Institute of Hydrology, and a registered professional geologist.

ACKNOWLEDGMENTS

We thank J. Berton Fisher for his initial suggestion and encouragement to publish our results from site-specific investigations and Ian Kaplan for discussions and debate with regard to estimating ages of environmental releases of petroleum hydrocarbons. We are indebted to Bruce Torkelson for the high-resolution gas chromatograms needed for this research and A. Jerome Skarnulis of Computer Design Software, Inc., for donating the time necessary to perform the transformations required to more accurately integrate the original Christensen and Larsen (1993) data with ours.

ABSTRACT

Since the 1980s, several techniques have been developed to estimate the year a petroleum hydrocarbon release occurred. In this article, we evaluate and expand on the model of Christensen and Larsen, who proposed that the degradation of normal heptadecane relative to pristane (i.e., nC17/Pr ratios) could be used to estimate the age of diesel fuels released into the environment. Linear regression analyses of nC17/Pr ratios from known subsurface releases of crude oil, middle distillate, fuel oil, and lubricating oil in diverse climatic settings (Subarctic, temperate, and tropical) define a statistically significant, negative linear correlation termed the middle distillate degradation (MDD) model, in which, like the Christensen-Larsen model, nC17 is almost entirely degraded within about 20 yr. By comparison, our investigations indicate that degradation of nC17 relative to Pr in aerobic, surface environments is also systematic, following a first-order kinetic relationship in which nC17 degrades about 5–6 yr subsequent to the release. As observed by others, the timescale of degradation under aerobic conditions is accelerated.

We also present analyses of average initial (nC17/Pr)o ratios of about 4500 worldwide crude oils and 90 domestic refined products (diesel jet A, fuel oils) to evaluate how variations in this parameter impact MDD model ages. As stipulated in debates surrounding the original Christensen-Larsen model, applications of the MDD model should be evaluated carefully on a case-by-case basis and not in an ad hoc fashion. Our results not only provide a database for evaluating the significance of geographic variations in (nC17/Pr)o ratios but also allow experienced investigators to estimate MDD model age uncertainties (3–10-yr window of uncertainty under optimal to worst case conditions, respectively) at sites where it is determined that such models are applicable.

Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Watermarked PDF Document: $14
Open PDF Document: $24