About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

Environmental Geosciences (DEG)

Abstract

Environmental Geosciences, V. 15, No. 1 (March 2008), P. 9-19.

Copyright copy2008. The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.

DOI:10.1306/eg.07250707006

Design of a constructed wetland system for treatment of copper-contaminated wastewater

George M. Huddleston III,1 John H. Rodgers Jr.2

1ENTRIX, Inc., 102 East Main Street, Pendleton, South Carolina 29670; [email protected]
2Department of Forestry and Natural Resources, Clemson University, Clemson, South Carolina 29634; [email protected]

AUTHORS

George M. Huddleston is project scientist at ENTRIX, Inc., and has 9 years of professional experience involving environmental toxicology and ecological risk management. He specializes in assessment of natural resources and development of strategies for mitigating ecological risks. He received his B.S. and M.S. degrees from Eastern Kentucky University and received his Ph.D. in 2001 from Clemson University.

John Rodgers received his Ph.D. from Virginia Polytechnic Institute and State University in 1977. Currently, he is a professor at Clemson University, director of the Ecotoxicology Program in the Department of Forestry and Natural Resources, and codirector of the Clemson Environmental Institute. His research involves a quest for accurate risk characterizations and development of sustainable risk mitigation tactics.

ACKNOWLEDGEMENTS

This study was funded by the U.S. Department of Energy through the South Carolina Universities Research and Education Foundation.

This pilot-scale constructed wetland study provided the basis for the design and construction of the full-scale treatment system at the Savannah River Site featured in this volume (Murray-Gulde et al., 2008; Nelson and Gladden, 2008).

ABSTRACT

This research provided an approach for designing a constructed wetland system for treatment of copper-contaminated wastewater and was mostly based on (1) a review of scientific literature, (2) theoretical modeling, and (3) verification of performance via a pilot system. The pilot system consisted of five pairs of 378-L (100-gal) wetland cells, each pair arranged in series with a 48-hr hydraulic retention time. Four pairs received local municipal water amended with 50 mug Cu/L (nominal) as CuSO4middot5H2O. The remaining pair received only municipal water, which provided an untreated control. Wetland hydrosoil was 85% sand and 15% silt and clay-size particles amended with agricultural lime (CaCO3), gypsum (CaSO4middot2H2O), and Osmocote time-release fertilizer. Organic matter content was 3% by weight. Hydrosoil and overlying water depths were 30 cm (12 in.) each. Wetland vegetation was Schoenoplectus californicus (giant bulrush). Performance objectives were to decrease total copper to less than 22 mug/L and to eliminate toxicity to Ceriodaphnia dubia based on organism survival and reproduction. Total (acid-soluble) copper concentrations associated with wetland inflow averaged 46 plusmn 9 mug/L, whereas outflow concentrations were 12 plusmn 7 mug/L. Overall total copper removal from influent water was 73 plusmn 14%. Although inflow water was toxic to C. dubia, no toxicity was observed in outflow water after 1 month. Diagnostic measurements of wetland function (e.g., hydrosoil redox potential and sulfide formation) indicated that copper bioavailability was likely limited by copper precipitation as sulfidic minerals. This constructed wetland design was implemented at the U.S. Department of Energy's Savannah River Site to mitigate risks to receiving-water biota.

Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Watermarked PDF Document: $14
Open PDF Document: $24