About This Item
- Full TextFull Text(subscription required)
- Pay-Per-View PurchasePay-Per-View
Purchase Options Explain
Share This Item
The AAPG/Datapages Combined Publications Database
Environmental Geosciences (DEG)
Abstract
Environmental Geosciences, V.
DOI:10.1306/eg.07250707006
Design of a constructed wetland system for treatment of copper-contaminated wastewater
George M. Huddleston III,1 John H. Rodgers Jr.2
1ENTRIX, Inc., 102 East Main Street, Pendleton, South Carolina 29670; [email protected]
2Department of Forestry and Natural Resources, Clemson University, Clemson, South Carolina 29634; [email protected]
AUTHORS
George M. Huddleston is project scientist at ENTRIX, Inc., and has 9 years of professional experience involving environmental toxicology and ecological risk management. He specializes in assessment of natural resources and development of strategies for mitigating ecological risks. He received his B.S. and M.S. degrees from Eastern Kentucky University and received his Ph.D. in 2001 from Clemson University.
John Rodgers received his Ph.D. from Virginia Polytechnic Institute and State University in 1977. Currently, he is a professor at Clemson University, director of the Ecotoxicology Program in the Department of Forestry and Natural Resources, and codirector of the Clemson Environmental Institute. His research involves a quest for accurate risk characterizations and development of sustainable risk mitigation tactics.
ACKNOWLEDGEMENTS
This study was funded by the U.S. Department of Energy through the South Carolina Universities Research and Education Foundation.
This pilot-scale constructed wetland study provided the basis for the design and construction of the full-scale treatment system at the Savannah River Site featured in this volume (Murray-Gulde et al., 2008; Nelson and Gladden, 2008).
ABSTRACT
This research provided an approach for designing a constructed wetland system for treatment of copper-contaminated wastewater and was mostly based on (1) a review of scientific literature, (2) theoretical modeling, and (3) verification of performance via a pilot system. The pilot system consisted of five pairs of 378-L (100-gal) wetland cells, each pair arranged in series with a 48-hr hydraulic retention time. Four pairs received local municipal water amended with 50 g Cu/L (nominal) as CuSO45H2O. The remaining pair received only municipal water, which provided an untreated control. Wetland hydrosoil was 85% sand and 15% silt and clay-size particles amended with agricultural lime (CaCO3), gypsum (CaSO42H2O), and Osmocote time-release fertilizer. Organic matter content was 3% by weight. Hydrosoil and overlying water depths were 30 cm (12 in.) each. Wetland vegetation was Schoenoplectus californicus (giant bulrush). Performance objectives were to decrease total copper to less than 22 g/L and to eliminate toxicity to Ceriodaphnia dubia based on organism survival and reproduction. Total (acid-soluble) copper concentrations associated with wetland inflow averaged 46 9 g/L, whereas outflow concentrations were 12 7 g/L. Overall total copper removal from influent water was 73 14%. Although inflow water was toxic to C. dubia, no toxicity was observed in outflow water after 1 month. Diagnostic measurements of wetland function (e.g., hydrosoil redox potential and sulfide formation) indicated that copper bioavailability was likely limited by copper precipitation as sulfidic minerals. This constructed wetland design was implemented at the U.S. Department of Energy's Savannah River Site to mitigate risks to receiving-water biota.
Pay-Per-View Purchase Options
The article is available through a document delivery service. Explain these Purchase Options.
Watermarked PDF Document: $14 | |
Open PDF Document: $24 |