About This Item
- Full TextFull Text(subscription required)
- Pay-Per-View PurchasePay-Per-View
Purchase Options Explain
Share This Item
The AAPG/Datapages Combined Publications Database
Environmental Geosciences (DEG)
Abstract
Environmental Geosciences, V.
DOI: 10.1306/eg.09191414008
CO2 injection simulation into the South Georgia Rift Basin for geologic storage: A preliminary assessment
Duke Brantley,1 John Shafer,2 and Venkat Lakshmi3
1Earth Sciences and Resources Institute, University of South Carolina, 1233 Washington Street, Suite 300, Columbia, South Carolina 29208; [email protected]
2Sundance Environmental and Energy Specialists Ltd., 747 West Manhattan Avenue, Santa Fe, New Mexico 87501; [email protected]
3Department of Earth and Ocean Sciences, Earth Sciences and Resources Institute, University of South Carolina, 701 Sumter Street, Columbia, South Carolina 29208; [email protected]
ABSTRACT
This study simulated the injection of supercritical phase into the South Georgia Rift (SGR) basin to evaluate the feasibility of long-term storage. Because of the lack of basin data, an equilibrium model was used to estimate the initial hydrostatic pressure, temperature, and salinity gradients that represent our study area. For the equilibrium model, the USGS SEAWAT program was used and for the injection simulation, TOUGH2-ECO2N was used. A stochastic approach was used to populate the permeability in the injection layer within the model domain. The statistical method to address permeability uncertainty and heterogeneity was sequential Gaussian simulation. The target injection depths are well below the 1 km (∼0.62 mi) depth required to maintain as a supercritical fluid. There were very little data pertaining to the properties in the deep Jurassic/Triassic SGR basin formations. So, conservative porosity and permeability starting points were postulated using data from analogous basins. This study simulated 30 million tons of injected at a rate of 1 million tons per year for 30 yr, which is the minimum capacity requirement by the U.S. Department of Energy (DOE) for a viable storage reservoir. In addition to this requirement, a 970-yr shut-in time (no injection) was also simulated to better determine the long-term fate and migration of the injected and to ensure that the SGR basin could effectively contain 30 million tons of . The preliminary modeling of injection indicated that the SGR basin is suitable for geologic storage of this U.S. DOE stated minimum capacity.
Pay-Per-View Purchase Options
The article is available through a document delivery service. Explain these Purchase Options.
Watermarked PDF Document: $14 | |
Open PDF Document: $24 |