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ABSTRACT

To achieve reclamation certification, oil-and-gas operations in
Alberta, Canada are required to monitor the revegetation of idle
well pads that no longer support operations. Currently, moni-
toring is completed by oblique, helicopter-collected photogra-
phy and on-the-ground field surveys. Both monitoring strategies
present safety and logistical challenges. To mitigate these chal-
lenges, a remote-sensing project was completed to develop and
deploy a reproducible workflow using high-spatial-resolution
satellite imagery to monitor revegetation progress on idle well
pads. Seven well pads in the Aspen region of Alberta, Canada
were selected for workflow development, using imagery from
2007, 2009, and 2011. Land-cover classes were derived from the
satellite imagery using a training dataset, a series of vegetation
indices derived from the satellite imagery, and regression tree
classification programs, and were used to evaluate changes in
vegetation cover over time. A refined version of this general
workflow was then deployed across 39 well pads in the Firebag
region of Alberta, Canada, using imagery from 2010 to 2016. In
2016, fieldwork was conducted across a subset of 16 well pads in
the Firebag region, which facilitated a formal accuracy assessment
of the land-cover classifications. This project demonstrated that
high-spatial-resolution satellite imagery could be used to develop
accurate land-cover classifications on these relatively small land-
scape features and that temporal land-cover classifications could
be used to track revegetation through time. Overall, these results
show the feasibility of remote-sensing–based workflows in monitor-
ing revegetation on idle well pads.
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INTRODUCTION AND BACKGROUND

Theprovince ofAlberta holds one of the largest crude-oil resources in
the world and the energy industry is the largest contributor to the
provincial economy. However, oil-and-gas development in boreal
ecosystems requires substantial postoperation reclamation. Alberta’s
land-reclamation program for the upstream oil-and-gas industry is
managed by the Alberta Energy Regulator (AER) as directed under
the Environmental Protection and Enhancement Act and the Con-
servation and Reclamation Regulation (Alberta Energy Regulator,
2016).As of 2013, therewere approximately 100,000 reclaimedwell
pads across the province, 60,000 well pads classified as “abandoned
but not reclaimed,” and an additional 430,000 well pads that were
drilled but had not yet been designated as either formally abandoned
or reclaimed (Alberta Environment and Sustainable Resource De-
velopment, 2014). The fundamental requirement for reclamation
certification is that disturbed land be returned to an ecological
condition functionally similar, but not necessarily identical, to pre-
disturbance conditions (Alberta Energy Regulator, 2016).

One component of Alberta’s reclamation program concerning
oil-sands-exploration (OSE) well pads is the requirement for mon-
itoring of idle well pads to provide information on revegetation
trajectory in support of eventual reclamation certification (Alberta
Energy Regulator, 2014). At present, most monitoring events on
these remote sites are completed by oblique, helicopter-collected
photography and on-the-ground field surveys, both of which pres-
ent safety concerns and logistical challenges. Regulatory guidance
(Alberta Energy Regulator, 2016) specifies that, prior to submitting
an application for a reclamation certificate, a well-pad operator must
perform an onsite environmental assessment to collect data dem-
onstrating the condition of the landscape (i.e., topographic features),
soils, and vegetation. The vegetation part of this assessment includes
an evaluationof the type, extent of coverage, andvigor of regrowthon
the well pad and surrounding area.

Given the remote and challenging environment of oil-and-gas
exploration areas in northern Alberta, safety and logistical challenges
are inherent to monitoring efforts. However, the spatial scale of the
current helicopter and on-the-ground monitoring activities on these
well-pad sites is compatible with current high-spatial-resolution
satellite imagery. Application of remote-sensing technologies could
represent a substantial process improvement, streamlining recla-
mation monitoring, while simultaneously reducing safety risks. The
availability of commercial, satellite-derived, high-spatial-resolution
image data has increased significantly over the past decade, with
various commercial multispectral sensors having spatial resolutions
of less than 2 m (7 ft), and pan-sharpened imagery having spatial
resolution down to 0.3 m (1 ft).

Although this wealth of satellite data opens new doors for en-
vironmental monitoring, consistent interpretation of this imagery
can be challenging in heterogeneous settings such as boreal forests.
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Research efforts have gone toward development of
methodologies to address these challenges, usingmedium-
spatial-resolution optical-satellite sensors. For example,
Powers et al. (2013) used 30-m (98-ft) spatial-resolution
Landsat data for a biodiversity assessment in the Cana-
dian boreal forest. Alberta Ground Cover Character-
ization, an initiative between the University of Alberta
and partners in the provincial and federal government,
completed land-cover maps derived from Landsat
(Sánchez-Azofeifa et al., 2005). In addition, the Alberta
government has supported the Alberta Terrestrial Im-
aging Centre at the University of Lethbridge in efforts to
create a plan to use remote sensing to assess multiple
aspects of disturbed-land restoration (Rochdi, 2012;
Rochdi et al., 2014). Rochdi (2012) used variable-
spatial-resolution (5–30 m [16–98 ft]) satellite imag-
ery over several sites to map land cover and land-cover
change. However, concerted efforts to leverage newly
available high-spatial-resolution satellite images to assess
land-cover changes within small disturbed areas have
been limited to date.

This paper describes the development and de-
ployment of methods using high-spatial-resolution
imagery to classify land cover and to track vegetation
change through time on small OSE well pads (~0.04 ha
[~0.10 ac]) within a boreal-forest matrix. This project
focused on two primary objectives. The 1st objective
was to develop methodology to detect ecologically
relevant land cover from high-spatial-resolution satellite
imagery. The 2nd objective was to test implementation
of the developed workflow on a larger set of well pads
to estimate land-cover change over time and identify
whether adjustments were needed. Areas of interest
(AOIs) containing OSE well pads that will eventually
require reclamation certification were selected from
within the Aspen field and the Firebag field in the
Athabasca oil-sands region (Figure 1).

SITE DESCRIPTION

The Aspen and Firebag AOIs fall within the Central
Mixedwood Natural Subregion of the Alberta Boreal
Forest (Natural Regions Committee, 2006). Climatic
normals (1981–2010) from Fort McMurray (station
identifier: 3062693) indicate a mean annual daily
temperature of 1°C (34°F), mean annual rainfall of
316mm(12 in.), andmean annual snowfall of 1338mm
(53 in.). The Aspen AOI lies within the Saskatchewan
Plains physiographic region and theMuskeg Ecodistrict

(Smith et al., 1979; Natural Regions Committee, 2006).
The Firebag AOI lies in the Northern Alberta Lowlands
physiographic region and the Hart Lake Ecodistrict
(Natural Regions Committee, 2006). Surficial geology
in both AOIs is characterized by heterogeneous mate-
rials ofmixed origins and textures, forming relativelyflat
to undulating topography (Natural RegionsCommittee,
2006). The Aspen AOI holds variable thicknesses of
organic soils overlying glacial moraine and glaciofluvial
sediments (Atkinson et al., 2014).Theseunconsolidated
deposits in turn overlie sedimentary rocks of the Lower
CretaceousGrandRapids Formation (Prior et al., 2013).
The Firebag AOI holds organic soils overlying fluted
moraines and localmeltwater channels and crevasse fills,
which rest upon the McMurray Formation (Fenton
et al., 2013; Atkinson et al., 2014) consisting of Lower
Cretaceous bituminous sandstones and shale (Prior
et al., 2013).

Across both AOIs, upland areas are dominated
by forests (Natural Regions Committee, 2006). Up-
land forests are commonly closed-canopy with aspen
(Populus tremuloides) dominant in early successional stages
and white spruce (Picea glauca) abundance increasing as
stands age. Common understory species include low-
bush cranberry (Viburnum edule), prickly rose (Rosa
acicularis), green alder (Alnus viridis), beaked hazelnut
(Corylus cornuta), andCanadabuffaloberry (Shepherdia
canadensis). Common herbaceous species include wild
sarsaparilla (Aralia nudicaulis), cream-colored vetchling
(Lathyrus ochroleucus), showy aster (Eurybia conspicua),
tall lungwort (Mertensia paniculata), and hairy wild
rye (Leymus innovatus). Jack pine stands are common
on coarse-textured substrate, often with bearberry
(Arctostaphylos uva-ursi) and Vaccinium species in the
understory. In the absence of disturbance, grasslands are
relatively rare. Where grass species do occur, northern
rice grass (Oryzopsis pungens), Rocky Mountain fes-
cue (Festuca saximontana), dryland sedges (Carex
xerantica), and plains wormwood (Artemisia campestris)
are most prevalent (Natural Regions Committee,
2006). Wetland ecosystems are also important com-
ponents of this landscape,with peat-accumulating fens
and bogs (peatland) dominated by Sphagnum mosses,
black spruce, ericaceous shrubs, and sedges occupying
as much as 40% of the land area (Vitt et al., 1996; Graf,
2009).

The Aspen AOI contains seven idle OSE well pads
located within a 10-km2 (4-mi2) area. Reclamation of
these pads began in mid-2007. However, one pad was
disturbed again between 2007 and 2009 by linear
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vegetation removal for seismic acquisition. The Firebag
AOI contains 39 OSE well pads located within a 1500-
km2 (580-mi2) area. These well pads were cleared in
2010 and fall into a northern and a southern cluster
(Figure 1).

METHODOLOGY OVERVIEW

This project was completed between 2014 and 2016.
Given the scope and duration of the work, it was as-
sumed from the outset that there could be challenges
related to availability of consistent imagery and software
development through time. Thus, methods were se-
lected to assess and, if needed, minimize potential in-
consistencies associated with (1) different sensors, (2)

different bands, (3) imagery acquired from times within
the growing season, (4) different acquisition parameters
(e.g., off-nadir and sun-elevation angles), and (5) evo-
lution in image processing and analysis tools. Detailed
methods andmethodological evolution are described in
subsequent paragraphs, but the general project pro-
gression was as follows. In 2014, the Aspen AOI was
used to develop a workflow to classify land cover on
seven OSE well pads and 250-m (820-ft) buffer zones
around the pads using high-spatial-resolution satellite
images collected in 2007, 2009, and 2011. Visual
assessment of results was performed using oblique
images collected during helicopter overflights con-
ducted in 2011. Land-cover classifications were then
used to track the progress of revegetation. In 2015, this
workflow was deployed over 39 OSE well pads in the

Figure 1. An overview map
depicting the location of the As-
pen and Firebag areas of interest
within the province of Alberta and
the locations of individual well
pads studied within each area of
interest. The 16 well pads marked
with triangles were field sampled
in 2016 for an accuracy assess-
ment of classification results. In-
dividual well pads presented in
subsequent figures are noted.
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Firebag AOI. The land-cover classes used at the
Firebag AOI were refined based on the results of the
Aspen AOI work. High-spatial-resolution satellite
images were collected over the Firebag AOI in 2010,
2012, and 2015 and used to perform land-cover classi-
fications. These classification results were again compared
to oblique images collected via helicopter overflights
conducted in 2015 to visually assess classification accu-
racy. A ground-truth campaign was conducted in the
Firebag AOI in 2016. Field data drove further refinement
of classes and a modification of the on-pad classification
methods. This refined methodology was then applied to
the 2010, 2012, and 2015 imagery collected over the
Firebag AOI and to additional images collected in 2011,
2013, 2014, and 2016 to achieve annual resolution.
Ground-truth data were used to perform a formal ac-
curacy assessment on classifications from 2016.

REMOTE-SENSING METHODS

Image Acquisition, Preparation, and
Orthorectification

Technical specifications for satellite images used in this
project are summarized in Table 1. All imagery and
geographic information system (GIS) files were pro-
jected in UTM 12N, using theWGS84 datum. Imagery
used for workflow development over the Aspen AOI in-
cluded QuickBird-2 (QB2) images from 2007, 2009, and
2011; aswell asWorldView-2 (WV2) images from2011 to
2013 (Table 2). Imagery used for workflow deployment
over the Firebag AOI included QB2 images from 2010;
GeoEye images from 2011; Pleiades images from 2012,
2013, and 2014; WV2 images from 2015 to 2016; and
WorldView-3 (WV3) images from 2015 to 2016.

The raw satellite data were converted to radiance
and corrected to at-satellite reflectance. Firebag data

Table 1. Specifications for Satellite Imagery Used in This Project

Satellite
Approximate Spatial
Resolution, m (ft)

Spectral Bands,
nm

QB2 0.65 (2.13) Panchromatic Pan: 405–1053
2.62 (8.00) Multispectral Blue: 430–545

Green: 466–620
Red: 590–710
NIR: 715–918

Pleiades 0.5 (1.64) Panchromatic Pan: 480–830
2.0 (6.56) Multispectral Blue: 430–550

Green: 490–610
Red: 600–720
NIR: 750–950

GeoEye 0.46 (1.51) Panchromatic Pan: 450–800
1.84 (6.04) Multispectral Blue: 450–510

Green: 510–580
Red: 655–690
NIR: 780–920

WV2 and
WV3

0.5 (1.64) Panchromatic Pan: 450–800
2.0 (6.56) Multispectral Coastal:

400–450
Blue: 450–510
Green: 510–580
Yellow: 585–625
Red: 630–690
Red edge:
705–745

NIR 1: 770–895
NIR 2: 860–1040

Abbreviations: NIR= near infrared;QB2=QuickBird-2;WV2=WorldView-2;WV3=
WorldView-3.

Table 2. Imagery Used in This Project

Area Sensor
Acquisition

Date

Off Nadir
Max

for Area,
Degrees

Area Min Sun
Elevation,
Degrees

Aspen QB2 08/29/2007 16.0 42.0
QB2 09/23/2009 16.2 39.4
QB2 08/06/2011 19.1 47.1
WV2 09/04/2011 9.9 40.2

Firebag
(north)

QB2 05/31/2010 4.3 53.4
GeoEye 06/08/2011 16.9 54.9
Pleiades 06/23/2012 19.3 52.6
Pleiades 06/23/2012 29.7 55.3
Pleiades 07/18/2013 10.6 52.2
Pleiades 07/18/2013 15.3 52.3
Pleiades 08/06/2013 7.7 48.6
Pleiades 09/08/2013 16.1 37.6
WV2 08/29/2015 20.6 37.5
WV2 05/24/3016 8.0 52.6

Firebag
(south)

QB2 05/31/2010 4.3 53.4
GeoEye 05/17/2011 12.1 51.6
Pleiades 06/23/2012 29.7 55.3
Pleiades 08/06/2013 7.7 48.6
Pleiades 08/11/2014 10.8 47.3
WV3 09/10/2015 20.6 37.5
WV3 06/07/2016 17.9 55.1

Abbreviations: Max = maximum; Min = minimum; QB2 = QuickBird-2; WV2 =
WorldView-2; WV3 = WorldView-3.
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were subsequently converted to surface reflectance
(Figure 2) (Huguenin et al., 2013). For the Aspen AOI,
processes following US Geological Survey (USGS) pro-
cedure for top-of-atmosphere correction (as described in
US Geological Survey [2017]) and specific parameters
for QB2 and WV2 imagery (Updike and Comp, 2010;
Podger et al., 2011; Kuester, 2016) were used. For the
Firebag AOI, IMAGINE AAICTM, supplied by Applied
Analysis Inc., was used to correct imagery to surface
reflectance for all imagery except WV3. Information
required to correctWV3 imagerywas not available at the
timeof imageacquisition, so those imageswere corrected
to surface reflectance by Digital Globe using proprietary
software prior to delivery to the research team.

Consistent, precise, image orthorectification is
a challenge in settings like these AOIs because detailed
digital-elevationmodels (DEMs)may not be available,
the topography is often fairly flat, and there is often
a paucity of stable reference points definitively iden-
tifiable on imagery. To control for spatial offsets in images
collected at different times, primary images were selected
fromeachgeographic region for orthorectification and all
overlapping images were coregistered to their corre-
sponding primary image using ground-control points. All
coregistered multispectral scenes were resampled to 2 m (7
ft)usingnearest-neighbor transformationandsnappedtothe
orthorectified pixel grid. For workflow development over
theAspenAOI, theAugust 11, 2011QB2 image (Table 2)
wasorthorectifiedusing90m(295 ft)horizontal-resolution

Canada Digital Elevation Data. Higher-resolution to-
pographic data were available for workflowdeployment
over the Firebag AOI. A hybrid DEM was created
covering the whole AOI by mosaicing a 15-m (49-ft)
resolution LIDAR-derived DEM available over a part of
Firebag with 30-m (98-ft) resolution Shuttle Radar
Topography Mission (SRTM) DEM covering the rest of
the region.This hybridDEMwasused toorthorectify the
May 24, 2016 WV2 (Table 2) image over the northern
part of theFirebagAOI and the June7,2016WV3 image
(Table 2) over the southern part of the Firebag AOI.
Satellite images were pan-sharpened for visualization
purposes, but all spectral analyseswereperformedon the
multispectral data at the native spatial resolution.

Land-Cover Classification

For this project, a supervised classification approachwas
used, requiring the following basic steps and decisions:
(1) selection of a classification scheme, (2) selection
between the application of a segmentation routine or
a pixel-by-pixel classification approach, (3) selection of
bands and derived indices to use within analyses, (4)
acquisition of training data, (5) choice and application of
a classification program, (6) postprocessing quality as-
surance, and (7) further analyses. These steps are de-
scribed in the subsequent paragraphs.

A modified Anderson Classification Scheme
(Anderson et al., 1976) was selected, with minor

Figure 2. Schematic diagram of workflow used in this project. Raw satellite imagery was first converted from digital number to surface
reflectance. Coregistration generated spatially aligned time-series imagery. Segmentation is an optional step, the appropriateness of which
will vary depending on heterogeneity of study areas. Similarly, the method of classification may vary. For the final workflow deployment of
this project, wetland determinations were made using ancillary data outside of the spectrally based classification workflow.
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revisions made as the project evolved and new in-
formationbecame available (Table 3).Duringworkflow
development over the Aspen AOI in 2014, it was ob-
served that nonvegetated areas on well pads displayed
two spectrally distinct subclasses, which were sepa-
rated and referred to as “barren” and “other non-
vegetated.” Classifications performed over the Aspen
AOI also included a spectrally based herbaceous wet-
land class. In 2015, the “other nonvegetated” class was
removed for classifications performed over the Firebag
AOI because the land cover that it represented was not
fully understood, leading to challenges in interpretation.
Fieldwork in 2016 led to two additional refinements.
First, substantial variability in percentage of vegetation
cover was observed on “scrub/shrub”-dominated pads,
leading to inclusion of an “incipient scrub/shrub” class for
areas that were generally “scrub/shrub” dominated, but
with visible ground and vegetation cover ranging from
10% to 90%. Second, the “herbaceous wetland” class
was found to be inadequate because it failed to capture
shrub- and tree-dominated peatlands, which are
common in the boreal forest (Vitt et al., 1996). Thus,
wetland categories were removed from the spectrally
basedclassification scheme.Wetlanddeterminationswere
performed postclassification using the Alberta Merged
Wetland Inventory GIS files (Alberta Environment and
Parks, 2017). This approach allowed for detection of
shrub-, tree-, and/or herbaceous-dominated wetlands.

Segmentationprocedures areused to subdivide images
into polygons of contiguous, spectrally similar areas prior to
classification. Segmentation can be especially useful in
forested areas where tree shadows can complicate classi-
fications (Ozdemir, 2008).Duringworkflowdevelopment
over the Aspen AOI in 2014, segmentation was applied
across whole images, including well pads and buffer zones,
using lambda-schedule segmentation, which accepts all
image bands as inputs (Robinson et al., 2002). By 2015,
a superior segmentation algorithm, Segment Mean Shift
(SMS), was available within ArcMap 10.3 and this seg-
mentation routine was applied during the 1st phase of
workflow deployment over the Firebag AOI. Segment
Mean Shift provides excellent results in clustering and
object delineation (Boukir et al., 2012), but only accepts
three bands. To provide maximum image information in
three bands, Tasseled Cap (TC) transformations (Kauth
and Thomas, 1976) were performed on the QB2,WV2,
and WV3 image surface-reflectance data. Tasseled Cap
transformations reorganize the original image bands
into components with defined interpretations useful
for vegetation mapping. The coefficients used to
create the TC bands are derived from each sensor and
statistically from within the image data. Because TC
transformations are not available for Pleiades imagery,
a three-band composite (near infrared [NIR], red, and
green bands) was used with SMS to segment the
Firebag Pleiades images. However, 2016 fieldwork in the

Table 3. Land Cover Classification Scheme Used in This Project

Legend Color Class Name Definition and Notes

Green Forest, deciduous Trees >3 m in height, dominated by species that lose leaves seasonally. Can include wetland
environments.

Dark green Forest, evergreen Tree >3 m in height, dominated by coniferous. Can include wetland environments.
Light green Scrub/shrub Woody vegetation <3 m in height with closed canopy. Can include wetland environments.
Orange Incipient scrub/shrub Shrubby vegetation dominant <3 m with cover ranging from 10% to 90%. Only used over the

Firebag AOI.
Yellow Grass Dominated by graminoid species. Typically grasses in upland environments and sedges in

wetland environments.
Light purple Barren Land that lacks or contains very sparse vegetation (<10%).
Red Manmade Developed areas or manmade, nonvegetated structures or infrastructure.
Purple Wetland Areas where the water table is at or near the land surface. Vegetated wetlands consisting of

herbaceous species only. Only used over the Aspen AOI.
Gray Other nonvegetated Nonvegetated surfaces undefined by other land-cover classes. Only used over the Aspen AOI.
Blue Water Bodies of water.
White Cloud Areas where no land-cover interpretation is possible because of obstruction caused by clouds,

their shadows, haze or smoke. May include terrain shadow.

Adapted from Anderson et al. (1976).
AOI = area of interest.
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Figure 3. Illustration of field-
sampling methods. (A) A hypo-
thetical oil-sands-exploration
(OSE) well pad with two distinct
land covers, LC1 and LC2, occu-
pying ~30% and ~70% of the
total area, respectively. In this
example, 10 sampling locations
were placed. Sampling locations
were proportionately divided
among land covers and then
randomly placed within each land
cover. At each sampling location,
a 2-m (7-ft) quadrat was placed
(B). In addition to categorical
data, six images were collected
looking straight down at the
center point (1), slightly up to the
north (2), east (3), south (4), west
(5), and a heads-up view to the
north (6). (C) An example of
a downward-looking image. (D)
An example of a heads-up image.
Note that these particular images
capture “incipient scrub/shrub” in
the field.

Table 4. Formulas and References for Vegetation Indices Used in This Project

Vegetation Index Formula Reference(s)

Difference Vegetation Index (DVI) NIR - red Tucker (1979)
Normalized Difference Vegetation Index (NDVI) (NIR - red)/(NIR + red) Rouse et al. (1973)
Ratio Vegetation Index (RVI) NIR/red Birth and McVey (1968)

Jordan (1969)
Chlorophyll Index (CHLIND) (NIR/green) - 1 Daughtry et al. (2000)
Soil-Adjusted Vegetation Index (SAVI) [(NIR - red)/(NIR + red +L)] · (1 + L) Huete (1988)

L is a correction factor, ranging from 0 for very-high vegetation cover to 1 for very-low vegetation cover. Typically, 0.5 is used and it was used in this project.
Abbreviation: NIR = near infrared.
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Firebag AOI documented substantial heterogeneity on
well pads that could potentially be masked through
application of segmentation processes prior to classifi-
cation. Thus, for the final workflow deployment over
the FirebagAOI in 2016, well pads were classified using
a pixel-by-pixel approach, with segmentation applied
only in the buffer zones that were predominantly
forested, homogenous, and more subject to tree-
shadow effects.

Because the goal of this projectwas to develop high-
spatial-resolution classifications and assess the progress of
revegetation over recently disturbedOSEwell pads, a series
of derived vegetation indices was calculated and used as
inputs for classification. Formulas and associated references
for the vegetation indices used in this project are summa-
rized in Table 4. These derived indices were used in con-
junction with the reflectance bands in the classifications.

Training data were visually selected on a per-pixel
basis to represent each land-cover class. For all images at
both the Aspen AOI and the Firebag AOI, training
pixels were selected by an experienced interpreter,
using the image data as reference. In addition, oblique,
helicopter-collected photographs were used to guide
identification of the training pixels. Oblique helicopter-
collected images were collected over the Aspen AOI in
2011 and over the Firebag AOI in 2015.

Regression tree classification was used to create
land-cover maps. Regression tree classification is a flex-
ible, nonparametric, and automated data-mining approach

for classifying with multiple sets of independent variables,
including ancillary data if available (Smith et al., 2004). For
workflow development over the Aspen AOI, segmented
images, reflectance bands, vegetation indices, and training
pixelswerecombined toperformtheclassificationusing the
National Land-Cover Database (NLCD) tool distributed
by the US Geological Survey (US Geological Survey,
2015). For the finalworkflowdeployment over the Firebag
AOI, the Maximum Likelihood Classifier in ArcMap 10.3
was used and segmentation was only applied to the buffer
zones.

Visual-Accuracy Assessment

The satellite-derived land-cover results were evaluated
for accuracy, consistency, and the ability to estimate
revegetation progress over time. As these sites are re-
mote and only accessible via helicopter during a brief
seasonal window, well-defined ground-truth data
were lacking during workflow development over the
Aspen AOI in 2014 and the initial phase of workflow
deployment over the Firebag AOI in 2015. Thus, a visual
(qualitative) accuracy assessment was performed using
2011 helicopter-collected photography for each Aspen
AOI well pad and 2015 helicopter-collected photography
for each Firebag AOI well pad. Land-cover classification
consistency between sensors was evaluated by comparing
the Aspen AOI 2011QB2-derived land-cover results with
the 2011WV2-derived land-cover results. In addition, the

Figure 4. A comparison of
a 2011 helicopter-collected image
(A), WorldView-2 (WV2) imagery
from 2011 (B; © 2011 Digital-
Globe, Inc.), and land-cover re-
sults from the WV2 image (C) for
well pad 12-24-93-7 within the
Aspen area of interest (Figure 1).
Legend is for land cover provided
in panel C.
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classification results from each of these images were
overlain to identify areas where results were inconsistent.

GROUND-TRUTH METHODS

Field Methods

In August 2016, a subset of Firebag well pads (N = 16)
was accessed by helicopter for field sampling (Figure 1).
Sampled well pads were selected to capture the geo-
graphic and land-cover variability of the broader set of

well pads subjected to remote-sensing analyses.On each
well pad, a stratified random-sampling scheme used
the following procedures. First, land cover was visually
assessed to (1) determine the number of land-cover
types present and (2) estimate the proportion of the
total well pad occupied by each land-cover type.
Sampling locations were then placed at random, well
within each land cover, while ensuring that sampling
locations were within homogenous land-cover patches
with buffers of greater than or equal to 2 m (7 ft) on all
sides. Buffers were ensured in an effort to reduce errors
associated with uncertainty in global positional system

Figure 5. Time series of satellite-
derived land-cover classification for
Aspen area of interest well pad
07-23-93-7 accompanied by
helicopter photography from
2011 (lower left). Vegetation
encroachment is apparent from
2007 to 2011. Within the buffer
zones of the two images from
2011, apparent differences in
“scrub/shrub” cover are likely
a relic of the difference in image
off-nadir acquisition angle
(QuickBird-2 [QB2]: 19.11° and
WorldView-2 [WV2]: 9.92°). This
relic is more apparent on a larger
scale where north–south-oriented
seismic lines are apparent or
obscured, depending.
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(GPS) locations. The fraction of total sampling locations
placed within a given land cover was scaled with the
proportion of the well pad occupied by that particular
land cover (i.e., stratified). Because airborne operations
were conducted in coordination with tree-planting ef-
forts, the total amount of time spent on each well pad
varied, resulting in a variable number of total sampling
locations for each pad (6–30 samples, mean = 13).
Additionally, one to four off-pad sampling points were
placed in representative vegetation to ground-truth buffer
zones, which were predominantly forested.

At each sampling location, a 4-m2 (43-ft2) cross-
type sampling quadrat was placed on the ground
(Figure 3). Within each quadrat, the dominant and
secondary/subdominant land-cover classes were deter-
mined. Supplemental ecological and geomorphological
data were also collected, including dominant plant taxa,
plant height, landform, soil texture, and wetland status to
aid in subsequent interpretationof theaccuracyassessment.
Additionally, six images were collected at each sampling
location, followinga consistent collectionpattern, andwere
geographically storedwith thepoint featureassociatedwith
the sampling location (Figure 3).All data, images, andGPS
locations were collected using a custom-built data model
for theCollector application forArcGISwith three iPadAir
devices. Accuracy tolerancewas set such that pointswould
not be collected if accuracy was greater than 9 m (30 ft).

Formal-Accuracy Assessment

To complete the accuracy assessment, field points were
rasterized to create validation pixels, which were sub-
sequently snapped to the center of the pixel in the
2016 land-cover classification map. A spatially fuzzy
intersection of the validation pixels with the 2016 land-
cover classification map was used to create an error
matrix that accounted for spatial uncertainty in the
GPS point-of-sampling locations by comparing the
validation pixel with the pixel to which it was snapped
and each of the eight nearest neighbor pixels (ad-
joining). If the field determination in the validation
pixel matched the target pixel or any of the eight
nearest neighbor pixels, it was considered to be a
match. Results were exported to spreadsheet soft-
ware for subsequent analyses. User and producer ac-
curacy were calculated to express errors of omission
(correct calls left out) and commission (calls were
added that should not have been included), re-
spectively. Accuracy was evaluated by calculating
percent match, the Kappa coefficient (Congalton and

Figure 6. Revegetation progress within the Aspen area of in-
terest. Mean and standard deviation were calculated by class
across the seven well pads in 2007, 2009, and 2011 on off-nadir
acquisition angle.
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Green, 2008), and the Tau coefficient, using the ap-
proach developed by Ma and Redmond (1995).

REVEGETATION PROGRESS

The same straightforward approach to tracking re-
vegetation progress was performed for both the Aspen
AOI and the Firebag AOI. Within each classified well
pad, the percentage of cover was calculated by class.
Then, yearly means and standard deviations were cal-
culated to assess AOI-level patterns in land-cover change
through time. Results are presented graphically.

RESULTS

Aspen Area of Interest

Land-cover Classification and Visual-Accuracy Assessment
Helicopter-collectedphotographs, althoughqualitative,
generally supported the land-cover classification results
(Figure 4). For example, small-scale features such as
piping were visible in the helicopter images, observed in
the WV2 satellite imagery, and successfully classified
as “man-made” (Figure 4). Similarly, areas of “barren,”
“grass,” and “forest, evergreen” are clearly identifiable in
both the helicopter-collected photography and the
satellite imagery as well as being correctly classified in
the land-cover analysis (Figure 4). However, careful
examination of the helicopter-collected photography
and satellite imagery also highlighted some potential
challenges for accurate classification. As expected,
boundaries are not always easily delineated between
land-cover types. For example, the classification struggled

to delineate boundaries within gradual transitions from
one land-cover class to another, especially “barren” to
“grass.” The effect of areas of mixed vegetation type
characteristics of different land-cover classes and as-
sumed subpixel heterogeneity could also drive instances
of misclassification. Sun angle and image acquisition
angle in places caused the projection of tall trees and
tree shadows into the margins, which can complicate
classification by altering detected spectral properties.
Image acquisition angle can lead to marginal well pad
areas being incorrectly classified as forest. The greater
the off-nadir image acquisition angle, the greater like-
lihood of pixel misclassification along the boundaries
between different land covers.

The consistency of the land-cover results was
documented by the comparison of classes derived from
the Aspen AOI 2011 QB2 and WV2 images (e.g.,
Figure 5). The classifications were generally consis-
tent across all seven well-pad sites, with pixel-to-pixel
agreement per pad ranging from 79% to 92%. The
overlay of Aspen AOI 2011 land-cover results dem-
onstrated that when inconsistent classifications oc-
curred, they tended to be in transition zones between
classes and around the edges of the well pads, likely
because of differences in sun and image-acquisition
angles.

Revegetation Progress
A visualization of change from nonvegetated to vege-
tated classes for an example well pad is provided for
2007–2011 in Figure 5. The earliest images over the
Aspen AOI were collected postdevelopment. In 2007,
well pads were dominated by “barren” (mean = 51%,
standard deviation = 32%) and “other nonvegetated”
(mean = 43%, standard deviation = 28%) (Figure 6).

Table 5. Confusion Matrix Generated During Accuracy Assessment 2016 Field Data Collected from 16 Well Pads in the Firebag Area of
Interest (Figure 1)

Classification Forest, Deciduous Forest, Evergreen Scrub/Shrub Grassland Barren Incipient Totals User’s Accuracy, %

Forest, deciduous 1 1 0 0 0 0 2 50
Forest, evergreen 1 8 5 0 0 0 14 57
Scrub/shrub 1 0 58 4 0 4 67 87
Grassland 0 2 6 26 0 2 36 72
Barren 0 2 2 1 19 11 35 54
Incipient 1 0 1 1 5 79 87 91
Totals 4 13 72 32 24 96 191
Producer’s accuracy 25% 62% 81% 81% 79% 82% N 5 241

Bold values represent.
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Barren land cover displayed steady decline from 2007 to
2011 whereas other nonvegetated was virtually absent
by 2009 (Figure 6). Grass coverage increased from near
0% in 2007 to 62% (standard deviation = 23%) in 2011
(Figure 6). Patterns of other vegetated classes are less
clear with apparent increases in 2009 (Figure 6).

Firebag Area of Interest

Land-cover Classification and Visual-Accuracy Assessment
As with the Aspen AOI, comparison of land-cover
classification to helicopter-collected images suggested
that classes were accurate in general. Use of pixel-
by-pixel classification in the final workflow deployment
successfully captured the heterogeneity observed in the
field, improving delineation between land-cover classes
on the pads. Postclassification analyses via projection of
well-pad footprints through the Alberta Wetland In-
ventory (Alberta Environment and Parks, 2017) in-
dicated that 14 of thewell pads were classified as upland,
11were classified as swamp, and 13were classified as fen
or bog.

Ground-Truth and Formal-Accuracy Assessment
Across the 16 well pads and buffer zones, a total of 241
ground-truth points were collected (Table 5). Pro-
ducer’s accuracy ranged from25% to82%(mean=68%)
and user’s accuracy ranged from 50% to 91% (mean =
69%). In both cases, forest classes had the lowest overall
accuracy followed by “Barren” (Table 5). Relatively low
accuracy values occurred where sample size was low
(Table 5). The remaining vegetated classes exhibited
strong producer’s and user’s accuracy. The overall ac-
curacy was 79% with a kappa coefficient of 72% and
a Tau coefficient of 71%.

Revegetation Progress
Imagery from 2014 captured only two cloud-free well
pads in the southern part of the AOI. Thus, 2014 was
excluded from subsequent analyses. Across the remaining
six analysis years, the number of pads with sufficient
cloud-free coverage for land-cover classification in
each year ranged from 32 to 38 (mean = 36). Prior to
development in 2010, well pads were dominated by
“forest, evergreen” (mean = 40.6%, standard deviation =
36.4%) and “scrub/shrub” (mean = 39.2%, standard
deviation = 34.4%). Development of well pads in late
2010 was marked by large declines in “forest, evergreen”
and “scrub/shrub” with corresponding increases in
“barren” and “grass” cover in 2011 (Figure 7). Although

Figure 7. Revegetation progress within the Firebag area of
interest. Mean and standard deviation were calculated by class
across the well pads in 2010, 2011, 2012, 2013, 2015, and 2016.
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“barren” cover peaked in 2011 (mean = 53.6%, standard
deviation = 36.2%) and showed steady declines there-
after, “grass” cover peaked in 2012 (mean = 48.4%,
standard deviation = 32.0%) and was variable through
2016. both “incipient scrub/shrub” and “scrub/shrub”
displayed minima in 2011 and increased from 2012 to
2016 (Figure 7). A visualization of land-cover change
over two example well pads from 2010 to 2016 is
presented in Figure 8.

SUMMARY AND CONCLUSIONS

The results of this work indicated that land-cover
classifications derived from high-spatial-resolution sat-
ellite imagery can be used to accurately characterize
OSE well pads (Table 5) and to track revegetation over
time (Figures 5–8). Satellite imagery reliably captured
relevant land-cover types discernable in the helicopter-
collected photography (Figure 4). This is currently the
accepted regulatory approach for monitoring the rec-
lamation status of OSE well pads in Alberta, Canada.
The geodetically consistent satellite imagery is poten-
tially more reliable for monitoring and detection of
change across time than repeat helicopter-collected
photography acquired at oblique viewing angles and
from variable vantage points. The reproducible pro-
cessing and classificationworkflow (Figure 2), developed
from widely-accepted remote-sensing practices, yielded
consistent classification across images from different
collection dates and satellite sensors. The straightforward
nature of the developed workflow lends itself to adap-
tation where needed and to future operational use.

Comparisons among classifications and oblique,
helicopter-collected imagery suggested that classifica-
tion results were more reliable away from the edges of
well pads. Misclassifications relating to “forest, ever-
green” occurred along well-pad margins for all imag-
ery used. These misclassifications were predominantly

Figure 8. Time-series satellite-derived land-cover classification
for two well pads within the Firebag areas of interest. Note that the
land-cover legend appears at the bottom of the figure. FR-11-29
(left panels) and FR-11-53 (right panels) are representative rel-
atively rapid and relatively slow revegetation observed across this
area of interest, respectively. The 2010 land-cover classification
represents the well pads prior to disturbance, 2012 data represent
the well pads 2 yr after disturbance, and the 2016 land-cover
classification represents the well pads 6 yr after disturbance.
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driven by the effect of the image-acquisition angle and
sun angle, which can cause trees and/or tree shadows to
obscure underlying land cover. The advent of high-
spatial-resolution commercial satellite sensors equip-
ped with directional capabilities not only increases
return frequency, but also increases the prevalence of
off-nadir observations (Figure 5). As is common with
remote-sensing data over heterogeneous habitat types,
delineating localized transition zones between classifi-
cations can be challenging.

An herbaceous wetland class was used in the
schema forworkflowdevelopment over theAspenAOI.
This class was found to be too restrictive because of the
prevalence of shrub-dominated peatlands and spruce-
dominated bogs beyond well-pad margins. However,
inclusion of shrub and/or forest vegetation into a general
“wetland” class could obscure recognition of the re-
vegetation trajectory. Therefore, wetland classification
was conducted outside of the remote-sensing workflow
over the Firebag AOI. In this landscape, some func-
tionally similar plant taxa can dominate bothupland and
wetland settings (e.g., shrubs in the Ericaceae family). If
future research reveals that inclusion of the “wetland”
class is important in understanding ecological dynamics
on well pads, additional work will be needed to define
a more detailed wetlands schema and evaluate auto-
mated tactics for incorporating ancillary data such as
detailed DEMs or training sets to classify wetlands on
well pads.

Alberta Energy Regulator guidance on site-reclamation
certification (Alberta Energy Regulator, 2016) spec-
ifies criteria for evaluating landscape, soil, and vege-
tation characteristics. This study demonstrated that
satellite-derived observations arewell suited to detecting
and/or monitoring well-pad vegetation over time. In
general, results suggested that establishment of graminoid
taxawas themost commonmode of ecological succession
in the Aspen AOI whereas shrub invasion was dominant
in theFirebagAOI (Figures6, 7). Futureworkcould assess
potential differences in ecological trajectory with respect
to wetland classification or other geomorphological fac-
tors. Furthermore, analysis of plot data to understand
within-class plant community composition would be
beneficial for predicting long-term development and
assessing potential management needs. The AER guid-
ance further specifies that relative vegetation vigor in the
assessment point be comparedwith a similar assessment
point in the undisturbed buffer zone. Although outside
of the scope of this work, pointwise comparisons as such
are achievablewith remote-sensingmethods. In conclusion,

this study demonstrated that high-spatial-resolution sat-
ellite imagery and straightforward workflows have the
potential for operational deployment within the moni-
toring and regulatory context in Alberta, Canada and
could reduce safety risks and logistical challenges associ-
ated with current monitoring practices over these remote
sites.
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