About This Item
- Full TextFull Text(subscription required)
- Pay-Per-View PurchasePay-Per-View
Purchase Options Explain
Share This Item
The AAPG/Datapages Combined Publications Database
Fort Worth Geological Society
Abstract
ONSHORE APPLICATIONS OF 3-D SEISMIC TECHNOLOGY
Tom Davis - Colorado School of Mines
Steve Roche - Halliburton
Geophysical
Services, Inc.
Susie Mastoris - Landmark Graphics Corporation
The
data
acquisition of a 3D survey is critical for its success. Not only can nothing be
produced until the
data
is gathered but many of the
data
processing algorithms are
dependent on how the
data
is gathered. Algorithms such as migration require that the
data
be acquired over a certain areal extent with sufficient
sampling
. Other processes are
statistical in nature and require a large enough base of samples to converge on the correct
solution. It can be argued that the
data
acquisition is the first processing step, the
sampling
of the reflected waveform.
The design of a 3D survey needs to be target-oriented, that is, based on the objectives of the survey. Even when an acquisition program becomes "standard" through common use in a specific area, a review of project objectives is a valuable exercise. An example is the fairly low-fold surveys in use in the Horseshoe Atoll area in the Permian Basin of West Texas. These surveys are adequate for imaging the pinnacle reefs in most cases. But in areas where there is a lateral velocity gradient, caused by a later shelf edge, the "standard" design lacks the statistical base to solve the velocity field. A poor or incorrect Image may be the result.
To design a 3D survey, one considers the target depth, maximum frequency of interest, the velocity field and the dips (geometry) of the target horizon. The exercise may be viewed as defining the wavelengths, in time and space, or the reflected signal required to image the target. For simple structure, only simple equations describing the geometry of raypaths is required. For complex structure, the problem can be modeled on a computer. Once the exercise of understanding where the reflected signal arrives at the recording surface is complete, the acquisition parameters are selected.
In most cases there is more than one target horizon, often a second, shallower
marker. This is desired for QC of the 3D
data
volume or for interpretation methods such as
isocron
mapping. Secondary considerations for project design include the number of individual trace
contributors to a subsurface point, the "fold" of the
data
, and the offset and azimuth
distribution that make up the fold.
As a geophysicist considers the many variables to find an optimum design, there are
often cultural restrictions that compromise the efforts. The result is that a 3D project may
involve several iterations of design/costs analysis.
Geophysical
contractors have developed
sophisticated 3D design packages to aid in modifying acquisition parameters.
The surface area occupied by a seismic survey must be larger than the subsurface area to he imaged. The extra distance around the edges of the survey is called the migration aperture (or "fringe", "halo"). There are two main components to be considered in computing the required aperture, dip effect and fresnel zone width. The dip effect is the extra distance required to record information from dipping interfaces. For steep dips, 45 degrees or more, the increased aperture due to dip can be quite large. The fresnel zone width can be thought of as the minimum fringe required for the migration algorithms to operate correctly. The dimensions of the 3D acquisition geometry on the surface are the size and placement of the migration aperture.
The subsurface binsize is the
sampling
within the migration aperture. With the
frequency content provided by the source parameters, the subsurface
sampling
is the major
factor in the resolution capabilities of the resulting
data
volume. Both vertical thicknesses
and areal extent are influenced by binsize. A hazard of undersampled
data
is the effect of
aliasing. An example of aliased
data
could be steeply dipping, higher frequency
data
(often
a desirable degree of resolution) that is aliased to appear as
data
with less dip and lower
frequency (undesirable and misleading).
Several equations for general use are listed. The results for computing binsize and migration aperture are listed for a hypothetical survey.
The "fold" of the
data
is the number of individual trace contributors to a given
subsurface bin. Not only the numerical amount of fold is important, but how it is composed.
An even distribution of offsets is critical for velocity estimation, accuracy of statistical
processes and improvement of signal/noise ratio. The azimuthal distribution of the fold is
important depending on the complexity of the subsurface. For targets with gentle dip or a
pronounced strike-dip orientation narrow range of azimuths will suffice (and may he
preferable). For complex subsurface a wide range of azimuths is required so that more of
the target reflectors are illuminated, that is there are no blind zones where no reflections
points are recorded.
There are many techniques available to reduce the cost of a 3D survey, both acceptable
an unacceptable. Every method employed to reduce the cost has an associated effect on the
resulting
data
quality. It is part of the survey design exercise to understand what impact a
cost-reduction technique will have on the
data
and whether or not the objectives of the
survey will or will not be compromised.
Acceptable cost-reduction techniques, within constraints, included reduced fold, reduced source effort, the use of multiple vibrator source sets (alternate or simultaneous sweeping), reduced number of geophones per group and coarse binsize followed by interpolation.
Unacceptable cost-reduction techniques include:
- reducing the size of the survey (reduces the migration aperture which causes an incorrect image of the subsurface)
- increasing the grid spacing (results in insufficient fold at target depth, poor offset distribution and low S/N ratio)
Simultaneous sweeping use two sets of vibrator sources on different source lines. The two sets use complementary sets of coded sweeps such that two production records can be recorded at once. In practice upsweeps and downsweeps are used along with phase differencing. In areas where the vibrators have good access, a reduction in acquisition cost of 25% can be obtained. On large surveys, where there is a time limitation due to leasing or drilling requirements, two crews can use simultaneous sweep techniques to avoid interference.
Alternate sweeping also employs two sets of sources, but records one while the other set is moving up. Significant cost savings are possible if the access is good.
Reduced source effort is increasingly being used to lower acquisition costs. Many
estimates of source effort are based on 2D techniques. More understanding of 3D methods
will lead to finding the optimum balance between fold and source effort. Once an
acceptable level of source effort has been established, there are different combinations of
sweep parameters which may be more productive than others. As a general
observation, the
faster a crew can acquire the
data
, the lower the cost. This will be offset by personnel cost
and equipment investment, but generally it is a sound observation.
View the First Page
A text abstract of this article is not available. The first page of the PDF appears below.
You may download the first page as a PDF.
Pay-Per-View Purchase Options
The article is available through a document delivery service. Explain these Purchase Options.
| Watermarked PDF Document: $16 | |
| Open PDF Document: $28 |