ENTRAPYMN OF PETROLEUM UNDER HYDRODYNAMIC CONDITIONS
 by
 M. King Hubbert
 Shell Oil Co.
 Houston

Abstract

Dempite its effectivences an a basis for petrolenn exploration, the anticlinal theory represente but a apecial case of oil and gas accumalation and is valid only wen the associated ground water 1 in in hydrostatic equilibrime. Since ground vater need not be at rest, a more general formulation valid for both hydrostatic and hydrodynamic conditions is required.

011 and gas poeseas onergy with reapect to their poaitions and exviroment, which when referred to nnit mase may be termed the potential at any given point of the fuid conaidered. When the potential of a apecified fluid in a region of underground space is not constant an mbalanced force will act upon the finid tending to drive it in the direction in wich its potential decreases. Hence oil and gas in a dispersed state underground tend to migrate from regions of higher to those of lower onergy levela, and come ultimately to rest in positions which constitute trapa, where their potentials agsume locally miniman or least valyes. Most often trape for petrolenn are regiona of low potential which are enclosed jointly by regiona of higher potential and impermeable barriera.

011 end gat migration occurs through a normally watersaturated environment. If the wator is at rest, oil and gas equipotential surfaces will be horizontal, the impelling forcen will be directed vertically apward, and the trapa will be the familiar onea of the anticlinal theory. If the water is in motion In a nonvertical direction, the ofl and gae equipotential will be tilted downard in the flow direction with those for oil inclined at a greater angle than those for gas. The impelling forcea for 011 and for gas will not be parallel and the two fiulde will migrate in divergent directions to trapa which will not in general coincide and may, in fact, be eparated ontirely, a trap for oil being incepable of holding gas, and vice Ierras.

Under hydrodynamic conditions accomalations of ofl or gaf will invariably exhibit inclined ofl- or gasmater interfaces with the angle of inclination given by

$$
\tan \theta=\frac{\frac{d x}{d x}}{\underline{d x}}=\frac{P_{\underline{g}}}{P_{\underline{x}^{-}} P_{0}} \frac{d M}{d x} .
$$

where dg/dx is the slope of the interface, $P_{\underline{L}}$ the density of the vater and P_{2} that of the oil (or gas), and $d h / d x$ the componant of the hydratilic gradiont of the vater in tho direction x. Stable oil and gas accumations may be found in anticlinea bat they may equally well occur in etructural terracen, nowen. monoclinee, and other maclosed structures entirely devoid of lithologic barrier: to updip migration.

Hot only are these offecta theorstically expectable, but they occur, vith tilts ranging from tens to hondrede of foet per mile, in almot evary major oil-producing area. If many much accumalations are not to be overlooked, ve are faced with the necessity of supplementing onr customary knowledge of structure and tratigraphy with the three-dimensional grownd-water hydrologr of every petroliferons banin.

