About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

GCAGS Transactions

Abstract


Gulf Coast Association of Geological Societies Transactions
Vol. 41 (1991), Pages 374-382

Pore Facies of Smackover Carbonate Reservoirs in Southwest Alabama

David C. Kopaska-Merkel (1), Steven D. Mann (1)

ABSTRACT

Pore facies are rock units that are defined by certain proportions of pore types, contain specific pore-throat-size distributions, and exhibit certain consequent fluid-flow properties. Pore facies may contain only one pore type, but more typically are characterized by a combination of several pore types. Data used in this study consist of point counts of thin sections that are plotted on ternary diagrams whose apices are pore types (ternary pore plots), commercial porosity and permeability data from core analyses, qualitative thin-section descriptions, and qualitative core descriptions.

Two distinct but partially intergrading pore facies are recognized in the Smackover of southwestern Alabama. These pore facies are defined based on the two most common pore types in the Smackover, particle-moldic (including secondary intraparticle) and intercrystalline pores, which together account for greater than 85% of total porosity in the Smackover. Rocks assigned to the Moldic Pore Facies exhibit similar depositional fabrics and experienced similar diagenetic processes. For example, this pore facies is most commonly composed of peloid and ooid grainstone (some fabric selectively dolomitized), modified by early cementation and particle dissolution. By contrast, in the Intercrystalline Pore Facies, destruction of primary fabrics by nonfabric-selective dolomitization is almost the sole determinant of pore-system characteristics. The Moldic Pore Facies dominates to the northwest (Choctaw, western Clarke, Washington counties; the updip area) and the Intercrystalline Pore Facies is dominant to the south and east (Mobile, Monroe, Baldwin, Escambia, and Conecuh counties; the downdip area). Pore facies distributions overlap in some areas (e.g., western Monroe county) indicating that multiple pore facies occur in many Smackover fields.

The two pore facies exhibit substantially different petrophysical characteristics. The mean slope of regression lines of porosity on ln (natural log) permeability for the Intercrystalline Pore Facies is 0.47, with a range of 0.19 to 0.90. The mean slope for the Moldic Pore Facies is 0.22 with a range of 0.18 to 0.27. The higher slopes for the Intercrystalline Pore Facies mean that permeability values may be more precisely predicted from porosity data in this pore facies. The mean maximum permeability for the Intercrystalline Pore Facies is 130 md; the corresponding value is 91 md for the Moldic Pore Facies. High-permeability fluid conduits are more common in the Intercrystalline Pore Facies than in the Moldic Pore Facies. In addition, all high-permeability examples of the Moldic Pore Facies contain substantial amounts of interparticle porosity and are found near the Smackover subcrop. (The remainder of the Moldic Pore Facies is characterized by permeability values substantially less than those of the Intercrystalline Pore Facies.) Porosity values are commonly higher in the Moldic Pore Facies, which has a range of mean porosity of 10.2 to 28.0% compared to 9.6 to 20.5% for the Intercrystalline Pore Facies. Greater hydrocarbon volumes can be stored in reservoirs dominated by the Moldic Pore Facies, but connectivity is better in the Intercrystalline Pore Facies.

Mixtures between the two pore facies are moderately common. Mixed pore systems commonly resemble the Intercrys talline Pore Facies in the slope of the regression line of porosity on ln permeability. In strata with mixed pore systems, "isolated" particle-moldic pores are commonly connected by networks of intercrystalline pores which control transport of fluids out of particle-moldic pores.


Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Watermarked PDF Document: $14
Open PDF Document: $24