

THE 4TH GEOLOGICAL CONFERENCE OF THE GEOLOGICAL SOCIETY OF TRINIDAD AND TOBAGO June 17-22, 2007, Hilton Trinidad & Conference Centre Port-of-Spain, Trinidad and Tobago

"Caribbean Exploration – Planning for the Future"

ABSTRACT

FORAMINIFERAL ASSOCIATIONS IN THE SAN JOSÉ CALCAREOUS SILT (LATE MIOCENE, TRINIDAD)

AND THEIR SEQUENCE STRATIGRAPHIC SIGNIFICANCE

Brent Wilson

Petroleum Geoscience Programme, Department of Chemical Engineering, The University of the West Indies, St. Augustine, Trinidad

bwilson@eng.uwi.tt

Benthonic foraminifera are examined in a ~270 m section of the San José Calcareous Silt member (Manzanilla Formation, Late Miocene *Globorotalia acostaensis* Zone) at eastern Manzanilla Bay, Trinidad. Where possible, the thirty-six samples were taken 5 m apart. Four samples, not used in statistical analysis, yielded <100 specimens, although one yielded only *Hapophragmoides wilberti*—a species that is in the Recent associated with intertidal mangroves. Of the 94 species recovered, only 24 formed >0.5% of the total recovery. *R*-mode (species-wise) cluster analysis conducted using these 24 species revealed five associations. The mean percentage abundance of planktonic foraminifera (mean *%P*) was calculated for each association. Palaeo-depths were estimated from this mean, as were 95% confidence limits on these palaeodepths, using

D = 19.7 + 1.34% P.

Palaeo-environments inferred as follows:

Association 1: Ammonia beccarii (1 sample), %P = 3.4%, shallow middle neritic waters (estimated depth, 24 m; 95% confidence interval, 4-42 m) influenced by fluvial outflow

Association 2: Amphistegina gibbosa (1 sample), %P = 0.9%, inner neritic, clear water (estimated depth, 21 m; 95% confidence interval, 3-41 m)

Association 3: Dominant Pseudononion atlanticum with subdominant Cibicidoides pseudoungerianus and Elphidium transluscens (10 samples), %P = 17.5%, mid middle neritic water (estimated mean depth, 43 m; 95% confidence interval for mean depth, 24-58 m)

Association 4: Dominant Textularia sawhi (3 samples), %P = 3.6%, shallow middle neritic water (estimated mean depth, 24 m; 95% confidence interval for mean depth, 4-42 m)

Association 5: Dominant Hanzawaia carstensi (17 samples), %P = 9.7%, mid middle neritic water (estimated mean depth, 32 m; 95% confidence interval for mean depth, 16-50 m).

Despite the relatively small range in estimated palaeo-depths (*Haplophragmoides wilberti* at 0 m; Association 3 at a maximum ~58 m), fluctuations in %*P* and the mean palaeo-depths estimated from %*P* suggest that the distribution of these associations may be broadly related to sequence stratigraphic events. Association 3 is allied with transgressive and highstand systems tracts in the middle of the section, and Association 5 with relative lowstand systems tracts in the upper and lower parts. Foraminifera provide no firm evidence for the existence of a falling stage systems tract in the San José section examined. The remaining associations, and the sample with *Haplophragmoides wilberti*, are intimately allied with relative lowstands indicated by Association 5, and reflect times of shallowest water and greatest riverine influence. Our knowledge of the ecology of the species in Associations 1-5 supports this sequence stratigraphic model.