About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

Rocky Mountain Association of Geologists

Abstract


The Mountain Geologist
Vol. 57 (2020), No. 2. (April), Pages 121-143
https://doi.org/10.31582/rmag.mg.57.2.121

Mineralogy and lithology of the Upper Cretaceous Niobrara Formation determined by hyperspectral core imaging

Justin E. Birdwell, Lionel C. Fonteneau, Brigette A. Martini

Abstract

Sections of the Upper Cretaceous (Coniacian to Campanian) Niobrara Formation in two cores from Kansas and Colorado, the Amoco Rebecca Bounds and USGS Portland 1, respectively, were examined by hyperspectral core imaging and analysis. A spectral imaging system combining high-resolution photography (50 μm), 3D laser profiling (20 μm), and near-visible + short-wave infrared reflectance spectroscopy (wavelengths from 450 to 2500 nm, 500 μm pixel size) was applied to these cores to provide spectral and textural data facilitating creation of continuous mineral and lithology class maps. In addition, compositing of pixel-based results to group pixels to create mineralogical and lithological logs (0.5-ft resolution) was performed to facilitate comparisons to other geochemical datasets. The results show general correspondence in trends identified by previous geochemistry studies, with some exceptions due to instrumental limitations related to low reflectance of some rock intervals and the limited range of infrared wavelengths examined. This study provides a cursory overview of an extensive dataset meant to demonstrate the utility of hyperspectral core scanning to studies of mudrocks in petroleum systems as well as the kinds of information this technique can provide for detailed examination of stratigraphic features in sedimentary systems more generally.


Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Watermarked PDF Document: $14
Open PDF Document: $24