About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

Rocky Mountain Association of Geologists

Abstract


The Mountain Geologist
Vol. 59 (2022), No. 4. (October), Pages 273-293
https://doi.org/10.31582/rmag.mg.59.4.273

Sediment provenance and stratigraphic correlations of the Paleogene White River Group in the Bighorn Mountains, Wyoming

Joshua R. Malone, John P. Craddock, David H. Malone

Abstract

Detrital zircon ages for tuffaceous sandstones and conglomerates of the White River Group provide insights on Paleogene basin evolution, magmatic activity, and paleodrainage throughout the Laramide broken foreland basin system of the northern Rocky Mountains in the western United States. Nonmarine deposits of the upper Eocene-Oligocene White River Group are preserved irregularly across northern Wyoming and western South Dakota. Residual Laramide uplifts and active magmatic centers supplied clastic and volcaniclastic sediment to broad, low-relief valleys beginning around 40 Ma. Subhorizontal strata of the White River Group are exposed in the elevated Bighorn Mountains (∼2300 to 2800 m), where sections ∼10-50 m thick rest unconformably on Precambrian-Paleozoic rocks along a surface of moderate to low relief (up to 150 m). U-Pb ages were obtained for detrital and igneous (ash-fall) zircons from seven samples (3 tuffaceous sandstones, 2 conglomerates, 2 sandstones) spanning three localities in the Bighorn Mountains (Darton’s Bluff, Hazelton Road, Freeze Out Point). Each locality contains conglomeratic layers, with clasts of local crystalline basement, and interbedded tuffaceous sandstones. Detrital zircon age spectra for four samples reveal peak ages around 2.9 Ga, matching the age of Archean crystalline basement within Bighorn Mountains, and maximum depositional ages (MDAs) of 27 Ma (sample 20BH15; Oligocene) and 35 Ma (sample FO-2; late Eocene). During the Paleogene, the Bighorn Mountains region received sediment from local crystalline basement and long-distance river transport from igneous and sedimentary sources to the west. The Bighorn Mountains were exhumed and stripped of Phanerozoic cover strata by early Eocene time, suggesting that post-Laramide input from Paleozoic-Mesozoic strata was likely from relict highlands of the Cordilleran (Sevier) fold-thrust belt rather than local Laramide block uplifts. In addition, Cenozoic magmatic provinces in the San Juan Mountains and Great Basin are inferred to have contributed volcaniclastic sediment through both eruptive ash clouds and north- to northeast-flowing fluvial systems that reached northeastern Wyoming. The White River Group preserved in the Bighorn Mountains represents localized late Eocene-Oligocene sediment accumulation atop a Laramide basement high coeval with regional deposition across the adjacent Great Plains. Both regions were supplied sediment from alluvial fans and fluvial drainage networks that tapped Laramide basement uplifts, Cordilleran thrust-belt, and foreland sources, along with Cenozoic igneous centers of the western U.S. interior.


Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Watermarked PDF Document: $14
Open PDF Document: $24