About This Item
- Full TextFull Text(subscription required)
- Pay-Per-View PurchasePay-Per-View
Purchase Options Explain
Share This Item
The AAPG/Datapages Combined Publications Database
Journal of Sedimentary Research (SEPM)
Abstract
Research Articles: Stratigraphic Architecture
Compensational
Stacking
of Channelized Sedimentary Deposits
Abstract
Compensational
stacking
, the tendency for sediment transport systems to preferentially fill topographic lows through deposition, is a concept widely used in the interpretation of the stratigraphic record. We propose a metric to quantify the degree of compensation by comparing observed
stacking
patterns in subsiding basins to what would be expected
from
uncorrelated random
stacking
. This method uses the rate of decay of spatial variability in sedimentation between picked depositional horizons with increasing vertical stratigraphic averaging distance. We present data
from
six sedimentary basins where this decay can be measured. The depositional environments range
from
river deltas to deep-water minibasins, and scales range
from
meters to 1.5 km in thickness. The decrease in standard deviation of sedimentation divided by subsidence with increasing vertical averaging distance is well described by a power law in each study basin. We term the exponent in this power law the compensation index, κ; its value is 0.5 for uncorrelated random
stacking
and 1.0 for perfect compensational
stacking
. Values less than 0.5 indicate anti-compensation, i.e., a tendency of depositional units to stack on top of one another. Parameters controlling the magnitude of κ include the frequency of system-scale avulsions and the temporal variability in deposition rates. Data describing the decay in the standard deviation of sedimentation/subsidence
from
the six studied basins collapse approximately onto a single power-law trend with κ = 0.75 when the measurement window is standardized by the mean channel depth of each system. Channel depth thus emerges as a fundamental length scale in stratigraphic architecture across environments. Although further study will likely reveal measurable variability in κ between depositional environments, the overall power-law collapse presented here suggests that a
stacking
behavior midway between purely random and perfect compensation is a good starting point in quantitatively
estimating
the stratigraphic arrangement of sedimentary deposits.
Pay-Per-View Purchase Options
The article is available through a document delivery service. Explain these Purchase Options.
| Watermarked PDF Document: $16 | |
| Open PDF Document: $28 |
