About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

Journal of Sedimentary Research (SEPM)

Abstract


Journal of Sedimentary Research
Vol. 80 (2010), No. 4. (April), Pages 303-319
Research Articles: Coastal Sedimentology

Ground-Penetrating Radar Study of North Padre Island: Implications for Barrier Island Internal Architecture, Model for Growth of Progradational Microtidal Barrier Islands, and Gulf of Mexico Sea-Level Cyclicity

James R. Garrison Jr., Joshua Williams, Sara Potter Miller, Egon T. Weber II, George McMechan, Xiaoxian Zeng

Abstract

Padre Island is the widest and longest barrier island in the world. It is 200 km long, up to 3 km wide, and 10–15 m thick. This 2,000-year-old barrier island was formed predominantly from northward longshore-drifted sediments from the Rio Grande River Delta.

A 3-km-long, shore-normal, 50 MHz ground-penetrating radar (GPR) profile was collected across Padre Island from the Gulf of Mexico to Laguna Madre at the northern end of the Padre Island National Seashore. A 1-km-long, shore-parallel GPR profile was also collected and intersects the shore-parallel profile approximately 1 km landward of the Gulf of Mexico. Vibracores taken along the shore-normal profile, at the beach foreshore, in the center of the island, at the lagoon margin, and at a recent washover fan were used, in conjunction with the description of a deep rotary core taken through the northern part of the island, to constrain the GPR interpretations.

In the shore-normal profile, GPR reflectors indicate both seaward- and landward-dipping clinoforms, as well as concave-upward scour-and-fill features. Seaward-dipping reflectors indicate approximately 2 km of progradation of the barrier island, suggesting an average progradation rate of 1 m/year. Landward-dipping reflectors, in the landward 1 km of the GPR profile, indicate approximately 1 km of landward growth, suggesting an average landward growth rate of 0.5 m/year. Nested concave-upward scour-and-fill features in the central part of the island are interpreted as tidal and washover channels 3–8 m deep. In strike cross section these scours are channel-form in outline and contain nearly horizontal, to slightly inclined, radar reflectors. The presence of channel-form scours supports the interpretation that landward growth was dominantly due to deposition by short-lived tidal deltas and storm washovers. Even though there was periodic landward island growth, North Padre Island has been progradational throughout its history due to a high sediment supply.

The understanding of the architecture and growth history of Padre Island provides much needed information about the internal geometry and the evolution of modern barrier-island systems. In addition, systematic variations in scour depths across the island suggest that storm frequency and intensity varied during the island’s history and provides a proxy for estimating sea-level fluctuations.


Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Watermarked PDF Document: $14
Open PDF Document: $24