About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

Journal of Sedimentary Research (SEPM)

Abstract


Journal of Sedimentary Research
Vol. 82 (2012), No. 6. (June), Pages 422-434
Research Article

Microcrystalline Previous HitQuartzNext Hit Generation and the Preservation of Porosity in Sandstones: Evidence from the Upper Cretaceous of the Subhercynian Basin, Germany

Marsha W. French, Richard H. Worden, Elisabetta Mariani, Richard E. Larese, Russell R. Mueller, Chris E. Kliewer

Abstract

Formation of microcrystalline Previous HitquartzNext Hit formation has proven to be effective at preserving porosity in deeply buried sandstone petroleum reservoirs, typically cemented by syntaxial Previous HitquartzNext Hit cement. There remains much uncertainty about what controls the growth of microcrystalline Previous HitquartzNext Hit and how it prevents syntaxial Previous HitquartzNext Hit overgrowths. Here, the Cretaceous Heidelberg Formation, Germany, provides a natural laboratory to study silica polymorphs and develop an understanding of their crystallography, paragenetic relationships, and growth mechanisms, leading to a new understanding of the growth mechanisms of porosity-preserving microcrystalline Previous HitquartzNext Hit. Data from scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM) data illustrate that porosity-preserving microcrystalline Previous HitquartzNext Hit cement is misoriented with respect to the host grain upon which it grows. In contrast, ordinary Previous HitquartzNext Hit cement grows in the same orientation (epitaxially) as the host Previous HitquartzNext Hit sand grain, and typically fills pore spaces. EBSD and TEM observations reveal nanofilms of amorphous silica (~ 50–100 nm in thickness) between the microcrystalline Previous HitquartzNext Hit and the host grain. The microcrystalline Previous HitquartzNext Hit is interpreted to be misoriented relative to the host grain, because the amorphous silica nanofilm prevents growth of epitaxial Previous HitquartzNext Hit cement. Instead, the microcrystalline Previous HitquartzNext Hit is similar to chalcedony with gsjsedres820422-ie1.jpg perpendicular to the growth surface and c axes parallel with, but randomly distributed (rotated) on, the host Previous HitquartzNext Hit grain surface. Development of pore-filling Previous HitquartzNext Hit growing into the pore (in the fast-growing c-axis direction) is thus inhibited due to the amorphous silica nanofilm initially and, subsequently, the misoriented microcrystalline Previous HitquartzTop that grew on the amorphous silica.


Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Watermarked PDF Document: $16
Open PDF Document: $28