About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

Journal of Sedimentary Research (SEPM)

Abstract


Journal of Sedimentary Research
Vol. 83 (2013), No. 8. (August), Pages 691-703
Research Articles

On the Stabilizing Influence of Silt on Sand Beds

Gerhard Bartzke, Karin R. Bryan, Conrad A. Pilditch, Katrin Huhn

Abstract

In marine environments, sediments from different sources are stirred and dispersed, generating beds that are composed of mixed and layered sediments of differing grain sizes. Traditional engineering formulations used to predict erosion thresholds are however, generally for unimodal sediment distributions, and so may be inadequate for commonly occurring coastal sediments. We tested the transport behavior of deposited and mixed sediment beds consisting of a simplified two-grain fraction (silt (D50  =  55 µm) and sand (D50  =  300 µm)) in a laboratory-based annular flume with the objective of investigating the parameters controlling the stability of a sediment Previous HitbedNext Hit. To mimic recent deposition of particles following large storm events and the longer-term result of the incorporation of fines in coarse sediment, we designed two suites of experiments: (1) “the layering experiment”: in which a sandy Previous HitbedNext Hit was covered by a thin layer of silt of varying thickness (0.2–3 mm; 0.5–3.7 wt %, dry weight in a layer 10 cm deep); and (2) “the mixing experiment” where the Previous HitbedNext Hit was composed of sand homogeneously mixed with small amounts of silt (0.07–0.7 wt %, dry weight). To initiate erosion and to detect a possible stabilizing effect in both settings, we increased the flow speeds in increments up to 0.30 m/s. Results showed that the sediment Previous HitbedNext Hit (or the underlying sand Previous HitbedNext Hit in the case of the layering experiment) stabilized with increasing silt composition. The increasing sediment stability was defined by a shift of the initial threshold conditions towards higher flow speeds, combined with, in the case of the mixed Previous HitbedNext Hit, decreasing erosion rates. Our results show that even extremely low concentrations of silt play a stabilizing role (1.4% silt (wt %) on a layered sediment Previous HitbedNext Hit of 10 cm thickness). In the case of a mixed sediment Previous HitbedNext Hit, 0.18% silt (wt %, in a sample of 10 cm depth) stabilized the Previous HitbedNext Hit. Both cases show that the depositional history of the sediment fractions can change the erosion characteristics of the seabed. These observations are summarized in a conceptual model that suggests that, in addition to the effect on surface roughness, silt stabilizes the sand Previous HitbedNext Hit by pore-space plugging and reducing the inflow in the Previous HitbedNext Hit, and hence increases the Previous HitbedNext Hit stability. Measurements of hydraulic conductivity on similar Previous HitbedNext Hit assemblages qualitatively supported this conclusion by showing that silt could decrease the permeability by up to 22% in the case of a layered Previous HitbedNext Hit and by up to 70% in the case of a mixed Previous HitbedTop.


Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Watermarked PDF Document: $14
Open PDF Document: $24