About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

Journal of Sedimentary Research (SEPM)

Abstract


Journal of Sedimentary Research
Vol. 87 (2017), No. 3. (March), Pages 189-209
Research Articles
DOI: 10.2110/jsr.2017.10

Influence of Seabed Morphology and Substrate Composition On Mass-Transport Flow Processes and Pathways: Insights From the Magdalena Fan, Offshore Colombia

Andrea Ortiz-Karpf, David M. Hodgson, Christopher A.-L. Jackson, William. D. McCaffrey

Abstract

Although the effects of interactions between turbidity currents and the seabed have been widely studied, the roles of substrate and bathymetry on the emplacement of mass-transport complexes (MTCs) remain poorly constrained. This study investigates the effect of bathymetric variability and substrate heterogeneity on the distribution, morphology, and internal characteristics of nine MTCs imaged within a 3D Previous HitseismicNext Hit volume in the southern Magdalena Fan, offshore Colombia. The MTCs overlie substrate units composed mainly of channel–levee-complex sets, with subsidiary deposits of MTCs. MTC dispersal was influenced by tectonic relief, associated with a thin-skinned, deep-water fold-and-thrust belt, and by depositional relief, associated with the underlying channel–levee-complex sets; it was the former that exerted the first-order control on the location of mass-transport pathways. Channel–levee-complex sets channelized, diverted, or blocked mass flows, with the style of response largely controlled by their orientation with respect to the direction of the incoming flow and by the height of the levees with respect to flow thickness. MTC erosion can be relatively deep above channel-fill deposits, whereas more subtle erosional morphologies are observed above adjacent levee units. In the largest MTC, the distribution of the Previous HitseismicTop facies is well imaged, being influenced by the underlying bathymetry, with internal horizontal contraction occurring updip of bathymetric highs, erosion and bypass predominating above higher gradient slopes, and increased disaggregation characterizing the margins. Hence, bathymetric irregularities and substrate heterogeneity together influence the pathways, geometries, and internal characteristics of MTCs, which could in turn influence flow rheology, runout distances, the presence and continuity of underlying reservoirs, and the capacity of MTCs to act as either hydrocarbon seals or reservoirs.


Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Watermarked PDF Document: $14
Open PDF Document: $24