About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

Journal of Sedimentary Research (SEPM)

Abstract


Journal of Sedimentary Research
Vol. 90 (2020), No. 11. (November), Pages 1601-1613
DOI: 10.2110/jsr.2020.74

The influence of benthic diatoms on the textures of carbonate-coated grains from a fluvial tufa spring in northern California

Hannah P. Boelts, Yadira Ibarra, Clive Hayzelden

Abstract

Diatoms are common in terrestrial freshwater carbonate environments, but their influence on the resulting carbonate texture and porosity remains unquantified. This study investigates the effect of diatoms on the textural variability and syndepositional porosity of spring-associated carbonate coated grains from a freshwater spring in Henry Cowell State Park, northern California, USA. Carbonate coated grains (n = 60) were collected from the distal-most pool of the spring (∼ 300 m from the spring source) and the porosity of the 1 cm diameter fraction (n = 20) was determined using the ImageJ software by adjusting the threshold size for pores > 1000 μm2. Results reveal a strong positive correlation between the number of pores and the number of diatoms examined in each coated grain (r = 0.77). There is a moderate positive relationship between the length of the largest diatom and the minor-axis diameter of a best-fit Previous HitellipseTop of its corresponding pore (r = 0.60). The total pore area for pores associated with at least one diatom was significantly greater than the total pore area of pores that did not enclose diatom frustules (t = 1.80, p < 0.05). Textural observations show that fine-grained laminated textures contain fewer diatoms than the porous textures, suggesting that diatoms disrupt lamination continuity by introducing pore space. These findings have implications for the influence of diatoms on the syndepositional porosity of carbonate rocks from the Cretaceous to Recent and may help explain textural differences between modern marine carbonate microbialites and their Precambrian counterparts.


Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Watermarked PDF Document: $14
Open PDF Document: $24