About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

Journal of Sedimentary Research (SEPM)

Abstract


Journal of Sedimentary Research
Vol. 92 (2022), No. 7. (July), Pages 635-657
https://doi.org/10.2110/jsr.2021.103

Correlative conformity or subtle unconformity? The distal expression of a Previous HitsequenceNext Hit boundary in the Upper Cretaceous Mancos Shale, Henry Mountains Region, Utah, U.S.A.

Zhiyang Li, Juergen Schieber

Abstract

In models of siliciclastic Previous HitsequenceNext Hit stratigraphy, the Previous HitsequenceNext Hit boundary in distal marine environments, where the strata are mudstone dominated, is usually considered a correlative conformity—the seaward extension of a subaerial unconformity. Despite its wide usage in the literature, objective recognition criteria of a correlative conformity remain lacking, largely due to the limited number of case studies directly examining the characteristics of Previous HitsequenceNext Hit boundaries in offshore mudstone-dominated environments. This study focuses on the mudstone-dominated transitional interval between the Tununk Shale Member and the Ferron Sandstone Member of the Mancos Shale Formation exposed in south-central Utah to extend our understanding of the characteristics of a Previous HitsequenceNext Hit boundary developed in the distal shelf environment of a ramp setting. An integrated sedimentologic, petrographic, and Previous HitsequenceNext Hit stratigraphic Previous HitanalysisNext Hit was conducted to characterize the Previous HitsequenceNext Hit boundary that separates the Tununk from the Ferron Previous HitdepositionalNext Hit system (hereafter referred to as the T-F Previous HitsequenceNext Hit boundary) and its lateral along-Previous HitdepositionalNext Hit-strike variability.

Although manifest as a mudstone-on-mudstone contact, the T-F Previous HitsequenceNext Hit boundary in all three measured sections is a subtle unconformity, characterized by erosional truncation below and onlap above, and marks a distinct basinward shift in facies association. The T-F Previous HitsequenceNext Hit boundary also marks the change from the Tununk offshore mud-belt system to the Ferron Notom delta system, and therefore represents a surface that divides two genetically different Previous HitdepositionalNext Hit systems. Based on two distinct marker beds that bracket the T-F Previous HitsequenceNext Hit boundary, the T-F Previous HitsequenceNext Hit boundary can be traced across the study area with confidence. The lateral variability in the characteristics of the T-F Previous HitsequenceNext Hit boundary along Previous HitdepositionalNext Hit strike indicates that it was produced by an allogenic base-level fall.

Offshore shelfal mudstone strata may contain a significantly higher incidence of subtle unconformities analogous to the T-F Previous HitsequenceNext Hit boundary than currently appreciated. Careful sedimentologic and petrographic analyses, combined with lateral correlations constrained by reliable chronostratigraphic marker beds, are essential for identifying subtle unconformities in shelf mudstone successions. The accurate recognition of subtle unconformities in mudstone strata is critical to apply the Previous HitsequenceTop stratigraphic approach appropriately to distal shelf environments, as well as to better constrain the timing and cause (allogenic vs. autogenic) of relative changes of sea level recorded in these rocks.


Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Watermarked PDF Document: $16
Open PDF Document: $28