About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

Journal of Sedimentary Research (SEPM)

Abstract


Journal of Sedimentary Research
Vol. 93 (2023), No. 11. (November), Pages 857-874
https://doi.org/10.2110/jsr.2023.016

CLIMATO-TECTONIC EVOLUTION OF SILICICLASTIC SANDSTONES ON PUERTO RICO: FROM LITHIC ARENITES TO QUARTZ-ARENITIC SANDS IN AN OCEANIC ISLAND-ARC SETTING

David K. Larue, Kimberly Mendez Mendez, José L. Corchado Albelo, Lauryn N. Martinez, K. Stephen Hughes, Thomas Hudgins, Hernan Santos, Alan L. Smith, Chris Osterberg

Abstract

Siliciclastic sandstone composition on the island of Puerto Rico, part of the Greater Antilles, was influenced by both tectonic setting and climate. Cretaceous through Eocene volcanic and plutonic rocks on Puerto Rico formed in an oceanic-arc setting. Sandstones deposited during arc volcanism are quartz-poor lithic and feldspatholithic arenites, whose geochemistry largely matches that of the oceanic-arc volcanic and plutonic rocks on Puerto Rico. After cessation of volcanism on Puerto Rico during collision of the Greater Antilles island arc with the Bahamas Bank, an Oligocene through Holocene overlap assemblage was deposited unconformably above the arc deposits in the North Coast and South Coast basins of Puerto Rico. The overlap assemblage consists of some siliciclastic material, but largely shallow-water carbonate deposits. Siliciclastic deposition in the overlap assemblage reflects the volcanic-arc source, plus quartz derived from plutons exposed during uplift. In the Pleistocene and Holocene (and possibly earlier), poorly consolidated quartz-arenitic sands with SiO2 values from 92 to 98% were deposited in the overlap assemblage.

On geochemical tectonic-affinity diagrams, the lithic sandstones plot, as expected, in or near the fields for oceanic-arc provenance. However, the quartz-arenitic sands plot incorrectly in the passive-margin field when considering major elements, and correctly in or near the oceanic-arc field when considering trace elements. Trace elements in the quartz-arenitic sands are largely found in refractory minerals, whereas major elements in feldspars and lithic fragments are effectively removed by intense tropical weathering. Hence, future use of tectonic-affinity diagrams should rely on trace-element geochemistry.

Sandstones derived from the Sierra Nevada continental arc in California have QFL quartz fractions below 60%, even though the source magmatic arc has significant modal quartz. This observation suggests a “climate cap,” which does not “allow” formation of more quartzose sediments. In contrast, tropical weathering on Puerto Rico removes this climate cap allowing the creation of quartz-arenitic sands from a source rock containing limited quartz. It is remarkable that quartz-arenitic sands occur on Puerto Rico, sourced from a provenance area containing extremely limited quantities of modal quartz (estimated at less than 5%) in an oceanic-arc environment bounded by two active subduction zones. Quartz-arenitic sands and sandstones are not uniquely continental or of cratonal origin; chemical weathering is fundamentally important for the origin of first-cycle quartz-arenitic sands.


Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Watermarked PDF Document: $14
Open PDF Document: $24