About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

Journal of Sedimentary Research (SEPM)

Abstract


Journal of Sedimentary Petrology
Vol. 62 (1992)No. 1. (January), Pages 1-10

Role of Microbial Processes in Linking Sandstone Diagenesis with Organic-rich Clays

Peter B. McMahon, Francis H. Chapelle, W. Fred Falls, Paul M. Bradley

ABSTRACT

Numerous chemical reactions within clay sequences have been proposed to produce dissolved material for diagenesis of deeply-buried sands. However, reactions responsible for solubilizing inorganic and organic constituents in clays at intermediate depths, and their importance to sandstone diagenesis, have not been evaluated. Results from this study show that the processes of microbial organic-acid production (via fermentation) in clays and microbial organic-acid consumption (via sulfate reduction) in sands effectively link organic-rich clays to sandstone diagenesis in the Black Creek Formation of South Carolina. Diagenetic processes have resulted in the formation of 10 volume percent calcite cement, 0.1 volume percent authigenic pyrite, and 1.5 volume percent secondary porosity in Black Creek sands. However, the distribution of these diagenetic processes is not uniform, resulting in net destruction of porosity in some parts of the sand and net porosity enhancement in other parts. Mass balance-derived rates of microbial organic-acid production (10-5 mmole carbon 1-1 yr-1) and microbial CO2 production (4 ^times 10-5 mmole l-1 yr-1) show that microbial processes can account for all organic carbon in the calcite cements (at least 11% of carbonate carbon based on isotope-balance calculations), all observed authigenic pyrite, and all observed secondary porosity. These findings show that microbial processes can serve to link organic-rich clays with sandsto e diagenesis at intermediate depths.


Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Watermarked PDF Document: $14
Open PDF Document: $24