About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

AAPG Special Volumes

Abstract

Gibson, R., 2012, A methodology to incorporate dynamic salt evolution in three-dimensional basin models: Application to regional modeling of the Gulf of Mexico, in K. E. Peters, D. J. Curry, and M. Kacewicz, eds., Basin Modeling: New Horizons in Research and Applications: AAPG Hedberg Series, no. 4, p. 103118.

DOI:10.1306/13311431H43466

Copyright copy2012 by The American Association of Petroleum Geologists.

A Methodology to Incorporate Dynamic Salt Evolution in Three-Dimensional Basin Models: Application to Regional Modeling of the Gulf of Mexico

Richard Gibson1

1BP America, Houston, Texas, U.S.A.; Present address: Apache Corp., Tulsa, Oklahoma

ACKNOWLEDGMENTS

This project would not have been possible without the contributions of many individuals currently or previously involved in BP Gulf of Mexico efforts, including R. Barrett, W. Bunting, M. Casey, T. Fitzpatrick, J. Gosses, K. Hargrove, W. Hart, T. Heyn, D. Jordan, J. Kirkova-Pourciau, A. Leroy, R. Kasino, S. Krueger, J. Laird, G. Lyman, K. Meisling, D. Muller, B. Nguyen, G. Pfau, D. Phillips, R. Priem, T. Searcy, J. Stephens, M. Steuer, J. Turner, and many others. S. Paulson and C. Gong were early adopters of the model-building approach described and helped significantly improve the methodology. R. Tscherny, formerly of Integrated Exploration Systems (IES), was critical in the initial workflow development because of his knowledge of PetroMod. The final article benefited from reviews by S. Krueger, C. Yeilding, K. Peters, and C. Lampe. Finally, I thank the management of BP America and Gulf of Mexico Exploration for permission to publish this work.

ABSTRACT

Construction of three-dimensional (3-D) basin models in areas of detached salt tectonics poses difficult challenges but is necessary to simulate the 3-D thermal effects of salt and correctly model subsalt burial histories. Over much of the offshore northern Gulf of Mexico Basin, a regional salt canopy detaches shallow structures, formed by growth and subsequent collapse of allochthonous salt sheets, from subsalt structures formed mostly in response to movement of deep (autochthonous) salt. Dynamic simulation modeling of this system requires (1) understanding the evolution of salt distribution and thickness through time, (2) a methodology to incorporate thickness changes within the simulation model, and (3) geometric solutions to account for the fact that allochthonous salt occurs at various stratigraphic levels across the basin.

Twenty regionally mapped horizons, including top and base of allochthonous salt and a composite weld representing areas of collapsed salt canopy, were used to build a regional Gulf of Mexico numerical simulation model. Salt isopach maps for sequential stages of the basin evolution were derived by vertical backstripping using “regionals” constructed to approximate the predeformation geometry of selected horizons. For a given horizon, the salt thickness changes since horizon deposition is represented by the difference between a mapped horizon and its regional. Simple rules were applied to partition the derived salt thicknesses between the allochthonous and autochthonous salt levels. To model the climb of the salt canopy across stratigraphy, the basin model was divided into subsalt and suprasalt parts containing horizons of equivalent age separated by an intervening allochthonous salt layer. The thickness of both the allochthonous and autochthonous salt layers were altered through time using the salt isopachs.

The resulting simulation model reasonably represents the large-scale structural evolution of the northern Gulf of Mexico Basin, including (1) progressive southward displacement and evacuation of salt along the Louann level, (2) basinward stratigraphic climb and progressive welding of salt within the canopy, (3) seaward progradation of depositional systems throughout the Mesozoic and Cenozoic, and (4) Miocene uplift and erosion of the onshore part of the basin. The methodology outlined can be adapted to assist in building basin models in other structurally complex basins.

Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Watermarked PDF Document: $14
Open PDF Document: $24