About This Item
- Full TextFull Text(subscription required)
- Pay-Per-View PurchasePay-Per-View
Purchase Options Explain
Share This Item
The AAPG/Datapages Combined Publications Database
AAPG Special Volumes
Abstract
DOI: 10.1306/13622135M1173780
Chapter 21: Fracture Analog of the Sub-Andean Devonian of Southern Bolivia: Lidar Applied to Abra Del Condor
Abstract
Tight fractured sandstones of the Devonian Huamampampa Formation are associated with large gas discoveries in the sub-Andean fold-and-thrust belt of southern Bolivia. A LIDAR-based fracture characterization of the Abra del Condor backlimb anticline, a structural-stratigraphic analog, is used as the basis for a fracture stratigraphy determination. Fracture characterization using LIDAR is integrated with outcrop scanlines and is framed by stratigraphy and structural positions within this thrust-related anticline. SEFL software was used to process LIDAR data, dividing the outcrop by orientations. A workflow to extract modeled fracture planes and their associated orientations, lengths, and heights results in five fracture sets, partially validated by fracture outcrop scanlines. Multiple virtual scanlines are used to measure fracture intensity, identify fracture stratigraphic units, and define fracture-associated parameters of abundance and size distribution.
Our LIDAR-based fracture characterization indicates a distribution of fracture intensities according to their structural position, decreasing from the hinge to the backlimb. From the five fracture sets identified, one set of orthogonal fractures dominates. Moreover, most of the fractures are contained or bounded within their fracture stratigraphic units and calculated fracture spacing ratio and the fracture space index show a nonexistent relation between fracture spacing and the fracture stratigraphic unit thickness.
Pay-Per-View Purchase Options
The article is available through a document delivery service. Explain these Purchase Options.
Watermarked PDF Document: $14 | |
Open PDF Document: $24 |