About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

AAPG Special Volumes


K. R. McClay, 2004, Thrust tectonics and hydrocarbon systems: AAPG Memoir 82, p. 276-301.

Copyright copy2004. The American Association of Petroleum Geologists. All rights reserved.

Previous Hit3-DNext Hit Analog Modeling of Previous HitInversionNext Hit Thrust Structures

Yasuhiro Yamada,1 Ken McClay2

1Fault Dynamics Research Group, Geology Department, Royal Holloway University of London, Egham, Surrey, United Kingdom; Present address: Dept. of Civil and Earth Resources Engineering, Kyoto University, Kyoto, Japan
2Fault Dynamics Research Group, Geology Department, Royal Holloway University of London, Egham, Surrey, United Kingdom


This work is based on Y. Yamada's Ph.D. research, which was supported by the Fault Dynamics Project sponsored by ARCO British Limited, PETROBRAS U.K. Ltd., BP Exploration, Conoco (U.K.) Limited, Mobil North Sea Limited, and Sun Oil Britain. Y. Yamada also acknowledges funding Previous HitfromNext Hit JNOC and JAPEX. K. McClay gratefully acknowledges support Previous HitfromNext Hit BP Exploration. Brian Adams and Howard Moore are thanked for constructing and maintaining the deformation apparatus. T. Dooley and P. Whitehouse are thanked for constructive reviews. Fault Dynamics Publication No. 113.


The geometries and kinematic evolution of Previous Hit3-DNext Hit Previous HitinversionNext Hit thrust structures have been modeled using Previous Hit3-DNext Hit sandbox analogs of hanging-wall deformation above footwall blocks with both concave-up and convex-up listric geometries. Extension over Previous Hit3-DNext Hit concave-up listric detachments produced characteristic rollover anticlines and crestal-collapse graben systems that parallel the along-strike, sinusoidal or cuspate plan geometries of the detachment breakaways. Three-dimensional Previous HitinversionNext Hit by horizontal contraction produced asymmetric, thrust-fault-bounded, hanging-wall Previous HitinversionNext Hit anticlines with curved axial traces that also follow the plan-view shape of the extensional breakaways. The main detachments were reactivated during the Previous HitinversionNext Hit, and new, steep thrust segments propagated upward Previous HitfromNext Hit the detachment breakaways. Shallow to moderately dipping hanging-wall back thrusts also propagated outward Previous HitfromNext Hit the crestal-collapse graben systems. The periclinal Previous HitinversionNext Hit anticlines exhibited two plunge culminations above the most concave sections of the main detachment surface. Extension above a Previous Hit3-DNext Hit convex-up, listric detachment surface produced a hanging-wall syncline together with a narrow, complex crestal-collapse graben system. In plan view, the axes of the hanging-wall syncline and the crestal-collapse graben formed parallel to the sinusoidal detachment breakaway. Previous HitInversionNext Hit of this system produced a broad, thrust-fault-bounded anticline that shows along-strike plunge culminations. The main detachment surface was reactivated, and a moderately dipping thrust propagated upward through the syninversion strata. Segmented, hanging-wall back thrusts formed subparallel to the main detachment breakaway. Vertical and horizontal sections through the completed models were used to construct Previous Hit3-DNext Hit synoptic models for these Previous HitinversionNext Hit systems. The results of the analog experiments compare well with published examples of Previous Hit3-DNext Hit Previous HitinversionNext Hit structures Previous HitfromNext Hit petroleum basins in the North Sea, Indonesia, and Argentina.

Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Protected Document: $10
Internal PDF Document: $14
Open PDF Document: $24