About This Item

Share This Item

The AAPG/Datapages Combined Publications Database

AAPG Bulletin

Abstract

AAPG Bulletin, V. 89, No. 10 (October 2005), P. 1347-1371.

Copyright copy2005. The American Association of Petroleum Geologists. All rights reserved.

DOI:10.1306/05100504003

Charging of Elk Hills reservoirs as determined by oil geochemistry

John E. Zumberge,1 Judy A. Russell,2 Stephen A. Reid3

1GeoMark Research, Ltd., 9748 Whithorn Drive, Houston, Texas 77095; [email protected]
2Occidental Oil and Gas Corporation, Suite 110, 5 Greenway Plaza, Houston, Texas 77046; [email protected]
3Occidental Oil and Gas Corporation, Suite 110, 5 Greenway Plaza, Houston, Texas 77046; [email protected]

ABSTRACT

Crude oils from Miocene and Pliocene reservoirs from the Elk Hills field in California's San Joaquin basin were analyzed for Previous HitstableNext Hit carbon isotopes and biomarkers. Cluster analysis of geochemical variables defines five principal oil families, all derived from different organic-rich facies of the Miocene Monterey Formation. Carbon Previous HitisotopeTop analysis indicates no contribution from the basin's other major source rock, the Eocene Kreyenhagen Formation. Oil families show a strong correspondence to stratigraphic intervals. Oils from pre-Monterey reservoirs were probably generated from the lowermost organic-rich facies of the Monterey and are the most thermally mature. Upper Miocene Stevens zone turbidite reservoirs contain oils of various thermal-maturity stages, but mature light ends are abundant and are likely generated from the floors of the adjacent subbasins located north and south of Elk Hills. The relatively minor presence of low-thermal-maturity biomarkers that are typically characteristic of Monterey oils may indicate that Stevens traps did not form until after the source intervals were at a higher level of thermal maturity. All oils in Stevens porcelanite reservoirs contain a higher concentration of low-maturity biomarkers, which may indicate derivation from more localized areas on the flanks of the Elk Hills anticlines. The shallow Pliocene oils have suffered biodegradation to different degrees, and the lowest API gravities occur on the flanks of the anticline. The carbon isotopic composition of these oils suggests yet another Monterey source facies that charged the Pliocene reservoirs and is not simply the result of vertical leakage from the older Miocene reservoirs.

Pay-Per-View Purchase Options

The article is available through a document delivery service. Explain these Purchase Options.

Watermarked PDF Document: $14
Open PDF Document: $24

AAPG Member?

Please login with your Member username and password.

Members of AAPG receive access to the full AAPG Bulletin Archives as part of their membership. For more information, contact the AAPG Membership Department at [email protected].