About This Item
- Full TextFull Text(subscription required)
- Pay-Per-View PurchasePay-Per-View
Purchase Options Explain
Share This Item
The AAPG/Datapages Combined Publications Database
AAPG Bulletin
Abstract
AAPG Bulletin, V.
DOI:10.1306/05110909034
Impact of interlayer slip on fracture prediction from geomechanical models of fault-related folds
Kevin J. Smart,1 David A. Ferrill,2 Alan P. Morris3
1Department of Earth, Material, and Planetary Sciences, Geosciences and Engineering Division, Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas 78238-5166; [email protected]
2Department of Earth, Material, and Planetary Sciences, Geosciences and Engineering Division, Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas 78238-5166; [email protected]
3Department of Earth, Material, and Planetary Sciences, Geosciences and Engineering Division, Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas 78238-5166; [email protected]
ABSTRACT
Understanding and interpreting the timing, location, orientation, and intensity of natural fractures within a geologic structure are commonly important to both exploration and production planning activities. Here we explore the application of finite-element-based geomechanical models to fracture prediction. Our approach is based on the idea that natural fractures can be interpreted or inferred from the geomechanical-model-derived permanent strains. For this analysis, we model an extensional fault-tip monocline developed in a mechanically stratified limestone and shale sequence because field data exist that can be directly compared with model results. The approach and our conclusions, however, are independent of the specific structural geometry. The presence or absence of interlayer slip is shown to strongly control the distribution and evolution of strain, and this control has important implications for interpreting fractures from geomechanical models.
Pay-Per-View Purchase Options
The article is available through a document delivery service. Explain these Purchase Options.
Watermarked PDF Document: $14 | |
Open PDF Document: $24 |
AAPG Member?
Please login with your Member username and password.
Members of AAPG receive access to the full AAPG Bulletin Archives as part of their membership. For more information, contact the AAPG Membership Department at [email protected].